During the last several years Fermilab's control system was undergoing significant changes. More and more
individual subsystems have been taken out of Camac crates and implemented as standalone boxes connected
directly to the network. This relieves the Camac Front Ends {1] from controlling those subsystems, but
creates significant additional load on the network, and what is even worse, some of the functionality that
was previously supported by Camac Front Ends is gone with this approach. A most important feature that
was supported through Camac Front Ends is the ability to do "ring-wide" reading and setting (the same
"device" around the ring, supported through the different subsystems could be manipulated by one request).
The necessity to support this feature, without further abusing the network, forced the creation of the

Network Server/Consolidator
B. Lublinsky

Fermi National Accelerator Laboratory

Abstract

network server/consolidator that is described in this paper.

1. Major system requirements.

The major requirements for this type of system are as follows:

1. It has to be flexible enough to allow adding new nodes and new "associations" between nodes;

2. It has to minimize network traffic that it originates.

The first requirement can be satisfied relatively easily by using multiple node association tables (fig 1).
Based on the table number that the request is referring to, internal software builds whatever amount of
requests is necessary to the nodes specified in the association table, sends them out, compiles the replies

together and sends results to the original requester.

Node 1

Node 2

Node 3

Fig 1. Association tables for Server/consolidator.

Node 1

Node 5

Node 8

576

Node 1

Node 2

Node 8

The second requirement is significantly tougher. If we examine the techniques that have been used for
implementing microprocessor based systems at Fermilab, we will find two distinct approaches. One of
them is the approach used in the Camac Front End [1]. Let us call it "no pool" approach. This approach is
usually used in the case when machine is capable of front-ending very many devices, but only small part of
them are accessed at a time. The advantage of this approach is that the machine is doing only what it has to
do to satisfy current requests. The software implementation of this approach is fairly straightforward: you
get the request, you go and get the data, you return it back. The obvious drawback is that for duplicated
requests the data will be collected multiple times. This approach is usually acceptable if acquiring the
necessary data is relatively "'cheap" in terms of time and hardware efforts to get it. The second approach is
usually used in the dedicated systems with relatively small amount of data [2]). In this case, the whole
system usually runs from a fixed data pool that is collecting all system parameters. With organization like
this, data is assumed always to be there, so any request from the outside can be satisfied immediately. This
implementation usually implies two major levels of data processing: internal data collection that ensures
data pool updates with the rate that is dictated by the system requirement, and replies to the rest of the world
with the frequency specified by requests. The advantage of this approach is that the data access is always
synchronous and straightforward. The biggest drawback is that usually the system is collecting more data
that it really needs. But if the amount of this data is relatively small, pool paradigms are usually used.

For the consolidator system neither one of these two approaches will work satisfactorily. Running a fixed
data pool is virtually impossible because we don't even know up front what will be the data that we will
have to collect, and no pool solution can turn out to be too expensive from the point of view of the
network traffic. The solution that has been used for this system is a dynamic pool, the kind of approach that
is used on the consoles for request consolidation. When the system starts up, the pool is empty and no data
collection is happening. When a request comes in, the first thing that is done is check whether this data is
already available through the pool. If it is, then the request will be reusing existing data collection, if not,
then new data collection will be started in the pool. The rules for appending of the requested item to the
element of the pool are as follows:

1. Data collection frequency of the new request should not exceed data collection frequency of the existing

element of the pool;
2. Length of the collected data for the new request should not exceed length of the collected data in the

pool.

When all of the requests pointing to the specific element of the pool are canceled, this element of the pool
will be deleted. This allows us to take advantage of both approaches described above. Only the data that is
currently necessary is collected, every duplicated data collection is merged by the pool. An additional caveat
here is that one request can build many requests going to different nodes. Having these small requests going
back and forth can degrade significantly network performance. Even worse, this can saturate the network
hardware. That is why, besides pooling of the requests themselves, we have to combine outgoing requests
to different nodes as much as we can. For every new request we are comparing its reply frequency to the
reply frequencies of the requests that already exist for this node. If the frequences are close enough and the
combined reply length fits into the ACNET packet, the existing reply is killed. It is then combined with
the new request and restarted.

2. Implementation.

Consolidator/Server is implemented using a 68040 VME-based system with two networking interfaces:
Token Ring, used for communication with the cryogenic control system [2], and Ethernet, used for
communication with the rest of the systems; it utilizes the VX-Works real time kernel. It uses Fermilab's
"standard" timing and communication support [3]. The whole system is organized around three major queues

(fig 2).

577

Hash tabled pool

— T T == =
o -
——— \
Poal item ™ poal item ..._' Pool item A
,/”' “ Trigger
Poaol item / lflg
pointer partial data partial data partial data Queus
partial data partlal data partial data
Pool Hem partial data partial data partial data Trigger
pointer - quetie
Y - S 7
~ -~
b
- \ \
Pool item S~ -
pointer >~ - Trigger
gueue
Running requests
frrunk/nod
E——» Retdat |_ ! Retdatl | Retdat
‘ request request request
Data item Data item Bata item
Data item Data item Data item
Data Rem Data item Data Item
Trunk/nod
iable
Pending requests
Trunk/nod
E——> Retdat — Retdat _— Retdat
‘ request request raguest
Data item Data item Data item
Data item Data item Data item
Data Item Data item Data item

frrunk/nod
table

Fig 2. Server/Consolidator main queues

578

The most complex part of the system is the pool itself. In order to speed up the access every element of the
pool is hashed based on the Device Index (DI) and Property Index (PI) that identify uniquely every Fermilab
device. Every incoming request is parsed for participating device requests and every device is ether linked
with the existing element of the pool or a new pool element is created for this device. Two other queues
have to do with the requests built out of original requests. Both of them are organized on the basis of the
node number of the system that they are talking to. One of them is the queue of the active (serviced)
requests; another one is the queue of pending requests. Usually pending requests are the result of one of the
nodes being down. Server/consolidator will periodically try to restart pending requests, so that if the node
that was down is rebooted, data will automatically start to come back.

3. Conclusion.

The system is completed and tested. It has been heavily used for cryogenic system support for the last
several months.

References

1. M. Glass et al, The upgraded Tevatron Front End. Nucl. Instr. and Meth. a293(1990) 87- 90
2. B. Lublinsky, J. Firebaugh, J. Smolucha, New Tevatron Cryogenic Control System, '"The proceedings

1993 International Conference on High Energy Physics", V3, p1817.
3. B. Lublinsky. Shell software for Smart subsytems with front-end capabﬂmes Nucl. Instr. and Meth A

352 (1994) 403 - 406

579

Multiple alarms, Major Goals and Implementation.

B. Lublinsky.

Fermi National Accelerator Laboratory*

1. Introduction

It is a very common situation that controlled hardware can work in a variety of different regimes,
in which case the control system has to be smart enough to recognize a regime change and reconfigure its
alarm system accordingly. For example, when a magnet quench occurs, the refrigerators warm up and the
cryogenic control system will generate many alarms. Only a few of them are important and they may be
lost in the flood of generated alarms. If the alarm system is smart enough to increase permissible maxima
for temperatures and pressures, we will see only what is important. Multiple alarms support usually
involves three major parts: :

- regime determination support;

- regime switching support;

- multiple alarms support.

This paper discuss implementation of multiple alarms support for the Fermilab cryogenic control
system (FRIGes) and the ways of possible utilization of the described approach in the rest of our overall
control system, long known as ACNET.

2. The overall structure of multiple alarms support.

The regime determination is the less formalized part of multiple alarms support and can range from
a brute force setting to a very precise calculation using the system's parameters. The current implementation
allows for a wide range of possible approaches by using the FRIG finite state machine mechanism[1]. This
mechanism is already built into the cryogenic control software, which is flexible enough that it is relatively
easy to implement an additional finite state machine (FSM) which is dedicated solely to tracking of the
cryogenic system parameters and determining the current regime.

The regime switching mechanism is significantly more generic and is implemented in the form of
a Virtual Machine Front End (VMFE) that can be used not only by the cryogenic control system but
throughout the whole of ACNET. The overall interaction scheme for multiple alarms support is shown in

figure 1. _

Multiple alarm support itself is included in the FRIG microprocessors internally in the form of
keeping several alarm blocks for every particular device having this tracking mechanism and also of
allowing alarm block switching based on regime changes.

3. Regime determination and broadcasting.

Several changes have been made to support multiple alarms in the FRIG micro. Firstly, two new
types of devices were introduced: a virtual machine control device and a virtual machine reflection device
(see figure 1). A virtual machine control device in turn consists of two sub-devices - primary and secondary.
The secondary device is used for establishing the link to the VMFE. It supports three database properties:
setting (setting of the VMFE device to which it will be connected), reading of setting (reading of the set
information back) and basic status (acknowledgment that the link to the VMFE has been established).

The primary device is used for setting of the regime itself. The regime can be set either externally
via the network from an application or internally by FRIG software, for example by the dedicated FSM.
When the primary device receives a setting it sends a corresponding message (via a proprietary protocol) to
the VMFE. Its presence facilitates internal intelligence in FRIG micro, which makes the decisions about
regime, or state, changes. The database properties supported for the primary device are setting (setting of the
current regime), reading and reading the setting (both reading the current regime) and basic status (as for the

* Operated by Universities Research Association under contract with the U.S. Department of Energy

580

Alarm .
Tabloid | [———{L2nmay | Virtual
header .
Individual rgac.hlne
alarm evice
block Vinua.l
Individual machine
alarm Reflection
block Device
Individual
alarm
block Virtual Machine
EEm Front End
Individual
alarm
block Ve
- irtual
Multiple machine
alamm Control
block Device
Regime
FSM
FRIG microprocessor

Fig. 1. Overall organization of the multiple alarms support

secondary device). The VMFE, when it receives a regime change message, checks it for correctness and, if it
is in fact correct, does the setting to the virtual machine reflection device, which is what actually controls
alarm block changing. In the current implementation we are supporting up to 64 virtual machine control
devices and up to 64 virtual machine reflection devices. This framework is flexible enough to provide both
internal and external regime switching and internode communications.

4. Virtual machine FE.

VMEE is an Open Access Front-end (an ACNET term referring to a node below the consoles in
the standard diagram, but where user application code can be inserted) that services requests for state changes
of virtual machines. Introduction of this FE might seem as an over-complication of the multiple alarms
scheme, but in fact it allows one to solve two very important problems:

581

- centralization of control of possible states and state transitions for all virtual machines in the

control system;

- coordination of regime change between multiple microprocessors.

The first goal is achieved by holding the descriptions of the virtual machines in ACNET devices,
owned by the VMFE (usually there is one-to-one correspondence between these devices and virtual machine
control devices). Each virtual machine description allows the user to define the set of valid states for this
machine and to allow/prohibit state transitions. This significantly simplifies the day-to-day operation of
maintaining the current virtual machine definitions.

The second goal is achieved by linking multiple virtual machine reflection devices to one virtual

machine device in the VMFE.

5. Microprocessor support for multiple alarms.

Multiple alarm support is achieved by replacement of the usual alarm blocks by alarm tabloids,
each containing 16 alarm blocks appropriate for normal devices. Every tabloid has a pointer to the virtual
machine reflection device by which it is controlled. This hierarchical scheme is established in the database,
by introducing an additional property - PRVMDI (standing for PRoperty Virtual Machine Device Index).
Given a VMEE device, it is possible to query it to determine the virtual machine reflection device for the
given node, that actually fulfills local regime control. This hierarchy can be downloaded into the
microprocessor and queried from a console application, both via a specialized protocol. Each time an alarm
scan is performed the value of the virtual machine reflection device is obtained and this value serves as an
index into the array of alarm blocks for this particular tabloid. The virtual machine reflection device itself,
in this implementation, doesn't have to know about the tabloids it is controlling. This allows one to have
connection pointers only in the tabloids themselves and eliminates the necessity of maintaining a linked list
of tabloids belonging to each particular virtual machine reflection. The overall regime tracking mechanism

is shown in figure 2.

Virtual machine
reflection device 2

2N

Virtual machine
reflection device 1

Virtual machine
reflection pointer

Individual alarm
block

Individual alarm
biock

Individual alarm
block

Individual tabloid

Virtual machine
reflection pointer

Virtual machine -
reflection pointer

Individual alarm
block

Individual alarm
block

Individual alarm
block

Individual alarm
block

Individual alarm
block

Individual alarm
block

Individual tabloid

Individual tabloid

Fig 2. The Tracking mechanism for regime change in alarms support

There are several caveats here. In order not to lose information when a state change occurs, tabloids
contain, besides the alarm blocks themselves, the current state value, current GOOD/BAD status, and

582

current "'message send to alarm process" flag, thus allowing smooth state transition. Whenever transition
occurs the normal alarm processing procedure is followed, beginning with initialization. In the abnormal
sitaations when the virtual machine reflection device requests a state for which the alarm block doesn't
exist, the microprocessor will produce an alarm of its own indicating this fact. There is a limited number of
such alarms which can be produced, in order to prevent an 'alarm storm' under unusual circumstances.

current alarm first alarm second alarm | third alarm aaw
block - block block block

Fig. 3 The external view of the alarm blocks.

The way in which an application sees a multiple alarm block is shown in figure 3. Here "current"
stands for the alarm block to which the virtual machine reflection device is pointing. Setting to and reading
from this block is possible, independent of what this "current" state is. Similarly the various "physical"
blocks may also be referenced.

6. Databasé support for multiple alarms.

Work had to be done for the ACNET database to support multiple alarms:
- support for the alarm array was implemented;
- the additional property PRVMDI was added.

Support for the alarm array assumes that instead of one alarm block with a particular length,
multiple alarm blocks can be associated with every alarm property (analog/digital alarms). The database
supports the same "view" of the alarm block tabloid as an external application except that alarm block 0,
the "current' block, is not defined in the database.

PRVMDI is that new property introduced especially for multiple alarm support. It is generalized
and thus could be used to support 'multiples' of any property. Specifically it consists of two fields; the first
of these is the index of the VMFE device, that is making the actual state transition. Using this index an
application can query the VMEE about the virtual machine reflection device of interest. The second field is a
set of bits corresponding to all possible properties, each of which indicates whether that property will be
affected by a VM device transition.

7. Conclusion.

Multiple alarm support is fully operational and has been used in the cryogenic control system at
Fermilab for several months. It has proved to be very useful operationally, especially during warm-up and
cool-down regimes for the Tevatron. Extension to other ACNET subsystems is under active consideration.

8. Acknowledgments.

Many people participated in design, implementation and testing of multiple alarms. Bob Joshel

designed and implemented the Virtual Machine FE. Brian Hendricks, Tim Zingelman, Bob Joshel and Glenn

Johnson implemented database support. Alex Martinez of the Cryo Group implemented cryogenic-specific
FSM support and thoroughly debugged the whole system.

References

1. B. Lublinsky, J. Firebaugh and J. Smolucha, New Tevatron Cryogenic Control System, "Proceedings of
the 1993 Particle Accelerator Conference", V3, p1817.

583

Development of Device Drivers on Real-time UNIX for the
SPring-8 Storage Ring Control System

T. Masuda, S. Fujiwara, T. Fukui, A. Taketani,
R. Tanaka, T. Wada, W. Xu, and A. Yamashita

SPring-8, Kamigori, Ako-gun, Hyogo 678-12, Japan

The HP-RT device drivers and API functions have been developed for VME boards such as DI, DO, TTL DV/O, Al,
PTG, GP-IB interface, and RIO (Remote 1/O). The drivers access the devices through the SWSM (System Wide
Shared Memory) mechanism. Design concepts of the APIs were to provide a simple interface, uniform types of
function and arguments and method of handling. The APIs are the only way to access and control the devices from

application programs.

1. Introduction

A distributed computing system has been adopted for the SPring-8 storage ring control system [1]. We use several
workstations for operator consoles and 28 VMEbus computer systems with HP-RT around the storage ring as the
front-end controllers. Each VME system is connected by an optical fiber to a 100Mbps FDDI backbone LAN
through a FDDI-Ethernet switching HUB. Hence, each VME system can use the full bandwidth of Ethernet
(10Mbps) for communication with upper-level computers. The optical-linked RIO system is mainly used as the
field-bus for the control of magnet power supplies, vacuum system, and beam position monitoring system [2].

2. VME system

To consider expandability and maintainability, we have adopted industry-standard hardware as far as possible. Thus
we have adopted a2 VMEbus computer system as the front-end controller. Because of the large number of
manufacturers making equipment to this standard, we can take advantage of the various single board computers, /O
boards and other bus/network interface boards available.

The equipment is directly controlled by I/O modules in the VME system or through the RIO or the GPIB field bus

as shown in Fig.1.

2.1 CPU board

The CPU board is a HP9000/743rt/64 which has a 32-bit PA-RISC 7100LC with a 64MHz clock. This CPU
board is very powerful and performance is quite satisfactory (77.7MIPS) as a front-end controller., It has an AUI
interface port, two RS-232C ports, an HP-parallel interface port and a single-ended SCSI II interface on its front
panel, and a PCMCIA interface on the mother board. A maximum of 128MB main memory can be fitted on a
single-slot board. In our case, 16MB of on-board memory and a 20MB PCMCIA flash ROM card are attached. The
flash ROM card is used as a boot device for the operating system (OS).

2.2 I/0 boards

We use several types of I/O boards, such as a 64-bit digital input (DI) board, a 64-bit digital output (DO) board, a
96-bit TTL level digital input/output (TTL I/O) board, a 32-channel single-ended/16-channe] differential analog input
(Al) board and a 5-axis control pulse-train generator (PTG) board, mainly for RF equipment control.

584

Switching Etherret
(optical Bhed

a2 a] E--E
5555 - 2] | E 2l 1Ells
ElEE g 5 £l [EIE
8 8 2 £ 8 gl |izlte
Et Ey g B E E- Ei
GFIB bus e Y . RS-485 {opheal Bhed
it
BB
s i
gl
quipment .
qupment

Fig.1. Schematic diagram of VME system and field buses.

2.3 Field buses

A fiber distributed RIO system was originally developed for the control of the magnet power supplies. The purpose
of the development was electric isolation, noise rejection and economy.

The RIO system consists of the master boards, several types of slave cards and 8-port branch cards if needed.
Optical fiber cables are used for connection in a star topology between the master board and the slave cards. The
master is a VME board with a 4KB dual port RAM. Currently, six types of slave cards are available. These are Euro
cards but not VME boards. The specifications of each slave card are as follows:

- Type-A: 1-channel AI with 16-bit resolution (integration type, conversion time < 128msec), 1-channel analog
output (AO) with 16-bit resolution, 8-bit DI and 8-bit DO,

- Type-B: 32-bit DI and 32-bit DO,

- Type-D: 40-bit DI,

- Type-E: 1-channel Al with 16-bit resolution (integration type, conversion time < 32msec), 8-bit DI and 8-bit DO,
- Type-F: 4-channel Al with 12-bit resolution (successively conversion type, conversion time < 1msec) with 32KB
local buffer and 1-bit external synchronization signal input,

- Type-G: 16-channel DI and 64-bit DO.

The features of the RIO system are as follows:
- optical fiber star connection between master board and slave cards,
- serial-link communication,
- maximum of 62 slave cards can be connected per one master board,
- 1Mbps transmission rate,
- cyclic transmission needs 0.2msec for type-A, B, D, E card, 0.5msec for type-G card and 27msec for type-F card
for communication, ‘
- up to 1 km transmission distance,
- HDLC protocol,
- can be connected by twisted pair cable (RS-485).

GPIB is also used as the field bus and largly used for the control of intelligent devices such as DVMs.

585

3. Operating system
3.1 Selection criteria

The selection criteria of the OS for the front-end controller were mainly real-time features and open system features,
and that it should be compliant with POSIX which is a standard OS proposed by IEEE. Among such OSs, we chose
LynxOS based HP-RT. The LynxOS supports many platforms such as i80386/80486/Pentium, M68030/40,
SPARC2/microSPARC, R3000 and PowerPC 601/603/604. The HP-RT is a migrated OS of LynxOS to PA-RISC.
Availability is restricted because HP-RT was originally only running on particular CPU boards such as
HP9000/7421t or 743rt. However we expect better support from the company. It is a crucial point in reducing
development cost and time for the new OS.

3.2 Features of HP-RT

HP-RT is just UNIX with real-time features, so it is not difficult to understand and manage. Actually we can get
the same development environment and use the same commands as UNIX. LynxOS provides both self- and cross-
development environments. On the other hand HP-RT provides only a cross-development environment and a host
system is required. HP9000/700 or 800 series workstations are available as the host computer of HP-RT.
Application programs and the kernels for the target system are built on the host system. HP-RT provides two types
of kernel, one is RAM-based and the other is disk-based. In the case of RAM-based kernel, it is booted from the host
system through the network with BOOTP (BOOTstrap Protocol), so the host must be the BOOTP server for many
target systems with different kernels. At the same time, the host system has to provide the building environment for
each kernel which has a different configuration. In other words, the host system has to provide both the download
~ service for the specified kernel and the development environment for a different kernel. When the first installation of
the specified kernel has been madeto the local mass storage device and problems arise, we must consider the same
problem for the disk-based kernel This setup is a little complex. From the point of view of the management of the
target system, the host-target system is more preferable.

4, Device driver

4.1 Feature of the HP-RT device driver

Device drivers are embedded in the OS kernel and are the glue between the kernel and the devices in the VME
system. They convert the commands from the kernel to the devices and vice versa. By separating the drivers from
the kernel itself, hardware independence of the original kernel is kept.

The HP-RT device driver is a collection of the functions called "entry points". The kernel can access the driver only
through these entry points. The HP-RT device driver has nine entry points as shown in Table 1.

Table 1
Name of entry points of HP-RT device driver and its purpose

Entry Point Purpose

install Called to install a major device

uninstall Called to uninstall a major device

open Called when device is opened

close Called when device is closed

read Called to read data

write Called to write data

ioctl Called to control a device

select support select system call

strategy called to perform block read and write operation
(only for block device)

The HP-RT device drivers can be written in C. Many special library functions with a C interface are provided
because almost all ordinary C library functions are not available in the drivers. They are called "driver service calls".
They provide the functions such as printf for kemnel debugging, dynamic memory allocation, hardware interrupt

586

configuration, kernel thread management, 10msec and 1ms resolution timer interrupt settings, system semaphore
control, address conversion and so on. The driver accesses the devices in the VME system through the SWSM
(System Wide Shared Memory) mechanism by which any VME address within the specified VME space is mapped
into the virtual address of the kernel. By means of the SWSM mechanism and some particular service calls, we don't
have to take care of the mapping of the virtual address corresponding to the VME address.

Three types of hardware interrupt handler are supported, SIGNAL_ONLY, ASM_CALL and C_CALL. The handler
of ASM_CALL (written in PA-RISC assembly language) and C_CALL (written in C) are called by the interrupt
dispatcher directly, while the handler of SIGNAL_ONLY is the kernel thread to wait for the system semaphore from

the dispatcher.

4.2 Design concepts

Design concepts of our device driver are generality, maintainability and reliability. We should realize the primitive
functions and eliminate any sequence depending on an application program, because the driver has to be modified
when this sequence is changed. Such particular sequences should be realized as libraries outside of the drivers.

With regard to RIO, we should not implement the control sequences of each slave card into the device driver. When
an application programmer wants to control the slave card directly, he does not want to know how to control the
master. We realize such particular functions by creating libraries. These libraries are a part of the device drivers in a

wide sense.

4.3 Status

The early versions of the device drivers for /O boards have been developed except for the TTL DI/O, the RIO
master board and the GPIB interface board. Hardware interrupts are supported in the Al, DI, PTG and GPIB interface
boards by the SIGNAL_ONLY type.

We start the test and the modification of the RIO device driver because the test of our control software scheme,
especially the test of the EM (Equipment Manager), is planned to handle the steering magnet power supplies [3].

They are controlied through the RIO and interfaced to type-A slave cards.
Through the test of APIs of the RIO(see 5.2), the RIO device driver was confirmed to work well. This RIO device

driver was installed in the real control system which has 7 RIO master boards. We checked that all master boards are
controlled through the driver.

5. API for device handling

5.1 Design concepts

We have designed the application program interfaces (APIs) for the application programs such as EM to handle the
devices in the VME system. Any application program should be written by using the APIs and never by touching
the drivers directly by using system calls or libraries.

The design concepts of APIs are the following:

- provide flat and primitive APIs,
- provide uniform type of function and arguments and manner of handling.

5.2 Status

The first version of the APIs for open/close the device, RIO master board control and type-A and type-B slave card
control have been developed. The master board is identified by the file descriptor which is a return value from the
open function of the device. The slave card is identified by the slave number. Thirteen APIs have been developed for
master control which involve the initialization of the master, control of the transmission, execution of the self-check
and getting the status. Additionally 6 APIs for type-A slave and 3 APIs for type-B slave are provided for data taking
and reading.

The primary system was found to work well. Actually these APIs were linked with the EM running on HP-RT for
the control of the steering magnet. Two steering magnet power supplies were controlled. We could successfully set
the power supplies to on/off, reset the error status, set and read current value and read the status with the RIO APIs

and the EM.

References

587

[1] R.Tanaka et al., these proceedings JCALEPCS'95, Chicago, USA, 1995)
[2] H.Takebe et al., Proc. of the 4th European Particle Accelerator Conf., London, June 1994, Page 1827-1829
[3] A.Taketani et al., these proceedings JCALEPCS'95, Chicago, USA, 1995)

588

Autoinatic High Voltage Conditioning of the Electrostatic LEP Separators
without Conventional Programming

B. Balhan, A. Burton, E. Carlier, J. H. Dieperink and V. Mertens.
European Organization for Nuclear Research (CERN) - SL Division,
CH - 1211 Geneva 23, Switzerland

Abstract

The TS Tool Kit is a generic, fully data-driven and user-configurable software system developed at CERN for
supervisory, control and data acquisition applications. It provides a comprehensive framework to solve fairly complex
process control problems requiring response times of the order of a second, without any need for conventional
programming. The characteristics and benefits of this approach are discussed in the context of the new high voltage
conditioning process for the electrostatic LEP separators.

1. EQUIPMENT

Separation of the e+e- beams in LEP is achieved by a vertical electrostatic separation system comprising 40 bipolar
separator units, arranged to provide local vertical separation bumps at all eight LEP interaction points. Each separator
consists of a vacuum tank of 50 cm diameter and 4,5 m length and contains two high-voltage electrodes mounted on two
insulating supports as shown in figure 1. Each electrode is connected via an alumina feedthrough to a high-voltage (HV)
generator (£ 175 kV DC). The gap width can be varied between 6 and 16 cm [1).

Fig 1. Separator tank with electrodes.

In order to improve the HV behaviour at the nominal field (15 - 30 kV/cm) after assembly, loss of vacuum, or polarity
change, a separator is (re-)conditioned by increasing the voltage slowly to the maximum field (56 kV/cm). The maximum
speed of voliage increase is determined by two parameters: the spark rate and the vacuum pressure in the tank. After the
maximum field has been reached and maintained during several hours for consolidation, the field is reduced to 50 kV/cm for
a total of 72 hours, during which the tank is checked for a low spark rate.

2. PROJECT OVERVIEW

To speed up the procedure and to save manpower a software regulation process has been used for many years to perform
the HV conditioning automatically. Its original implementation was a stand-alone C program {2] designed to run on the
local process controllers (PCs under SCO XENIX) widely used for LEP control. For screen handling, user input, and
display of historical and trending curves the program made abundant use of the CGI (Computer Graphics Interface) graphics
package, conveniently available under XENIX. Many of the parameters needed during the conditioning, like maximum
voltages, flat-top timeout interval, etc., were hard-coded, as the program was only foreseen to be used with the initial
separator setup {1]. As it was conceived, this program could also run only locally and not be interrogated or influenced over
the network. Therefore, its use necessitated a lot of travel between the equipment specialists’ offices and the various LEP

interaction points.

589

The recent migration from XENIX to LynxOS [3] (which no longer offers CGI) as operating system in the process
controllers, the evolution of the separator layout over the years (e.g. for the ‘LEP bunch train scheme’ [4] or LEP2) has
rendered this old implementation of the automatic conditioning obsolete. Therefore a new solution has been recently

conceived and realised. :

3. CHARACTERISTICS

The new automatic conditioning process has been developed in the framework of the fully configurable, event and data
driven ‘TS Tool Kit’ described already elsewhere [5, 6]. This provided:

No need for conventional (e.g. C) programming;

Portability (runs so far on HP-UX, ULTRIX, and LynxOS) (applications are platform-independent);

Full on-line remote control;

Separation between algorithm and user interface;

Equipment independence (can be used for all types of LEP separators but also other equipment, e.g. the SPS extraction

electrostatic septa).

In particular the suppression of conventional programming has allowed one to set up the new system in a remarkably short
time, permitting concentration on the proper implementation of the conditioning algorithm. It largely favoured a clear
communication between users and developers, resulting in a successful transfer of the desired functionality into the final
product. The user interface was largely conceived by non-software specialists, using functions of the TS Tool Kit together
with other easily configurable tools [7]. Non-software specialists will also be able to perform most of the future upgrade
work in case the applications evolve.

4. TS TOOL KIT

The core of the TS Tool Kit [5, 6] is a shared database to which the access is handled by a client/server mechanism.
This database is the run-time repository for all the data needed to run the application. It is surrounded with a set of client
modules, each dealing with a specific control task, like data acquisition, running control algorithms, or user interaction. The
general application behaviour is given through flat data files which are read in and interpreted at startup. The TS Tool Kit
configuration needed to implement the automatic conditioning process is shown in figure 2.

' “Shared database |

I Equipment access I

Fig 2. Software layout.
The various modules perform the following functions:

TSserver: shared database.

TScontrol: runs control and supervision algorithms specified in ‘rules’.

TSlog: stores, at definable time intervals or on change, any set of data in the shared database onto files or onto a
remote Oracle database.

TSequip: sends commands to, and reads data from, the equipment.

TSplot: writes selected data onto files in a format understandable by ‘gnuplot’ to provide trending curves.

Menu: generic alphanumeric user interface which permits, based on simple text files, the organization of operating
system commands or calls to user-written programs into a tree of menus, to display the menus, to move in
the menu tree and to invoke commands by single-key actions [7].

590

Several auxiliary modules (not shown here) are used from within Menu, for user access to the shared database for
information and run-time control of the application.

5. SCENARIO and ALGORITHM

The automatic conditioning procedure is determined through ‘scenarios’, made up from a set of parameters and ‘rules’,
executed by the TScontrol module. Various scenarios are available for positive, negative, or bipolar conditioning, selectable
from Menu. Likewise, parameters are pre-set as appropriate for the chosen scenario, but can be modified dynamically at run-
time to influence the procedure.

The rules are formulated as conditions and subsequent actions in term of data in the shared database, and specified in a
simple “controls language” [8]. These rules are read from a text file at start-up and continuously evaluated at run-time. All
rules are executed completely asynchronously when their respective conditions (WHEN ...) are evaluated as “TRUE’.

A largely simplified version of the rules constituting the automatic conditioning algorithm is shown in figure 3.

The overall process regulation loop is made up of three parts: hardware acquisition, algorithm checking, and hardware
setting modification. A frequency of 1 Hz has been chosen for the acquisition providing a sufficiently fast reaction time in
case of vacuum degradation or sparks (spark bursts are interlocked by software in the HV generators itself). It is noteworthy
that the TS Tool Kit is able to provide considerable shorter reaction times if run on sufficiently performant hosts. Separator
conditioning for the whole of LEP is presently run from a central HP workstation, even when several tanks need to be
conditioned in parallel. Due to the full platform independence of TS Tool Kit applications, individual processes could be
also be run locally or separately for each interaction point, without any modification.

WHEN Maximum electrical field reached
DO
IF First time
THEN
Double charging current
ELSE
Check spark rate
ENDIF
ENDDO

WHEN Poor vacuum
DO
Decrement charging current
ENDDO

WHEN Sparks
DO
Decrement charging current
ENDDO

WHEN Conditioning rate too low
DO
Increment charging current
ENDDO

WHEN Conditioning rate too high
DO
Decrement charging current
ENDDO

Fig 3. Set of TScontrol rules constituting the main conditioning algorithm (largely simplified).

In terms of numbers the new algorithm comprises 25 rules with a total of 500 lines. In comparison, the previous
implementation comprised about 6500 lines of C code and some minor parts in assembler.

6. CONCLUSION

Despite its considerable advantages in flexibility and user-friendliness over the previous solution, the new automatic
conditioning of the LEP separators has been realised, using the TS Tool Kit software package, in a much shorter time scale
(ca. 2 man-months counted from after the user specification phase compared to ca. 1.5 man-years for the old process). All
tests have so far been successfully achieved. The process will be intensively used during the coming LEP shutdown. The
new solution will be much easier to maintain and adapt to new needs if necessary, even outside its original LEP

applications. 591

As the TS Tool Kit is nicely integrated into the CERN SL accelerator control system (offering interfaces to the X user
interface, the general CERN alarm system, and Oracle on-line databases) further extensions of the automatic conditioning,
like alarm generation and forwarding or graphical user interfaces are quite straightforward.

ACKNOWLEDGEMENTS

The authors would like to thank Noel Garrel for providing the initial user specifications of the automatic conditioning
process, Brennan Goddard for his help and suggestions, and Alberto Aimar for upgrading the TScontrol module.

REFERENCES

(11 W. Kalbreier, N. Garrel, R. Guinand, R. L. Keizer, K. H. Kissler, Layout, Design and Construction of the
Electrostatic Separation System of the LEP e+e- Collider, Proc. European Accelerator Conference, Rome, Italy, June
7-11, 1988, Vol. 2, pp 1184 - 1186.

[2] B.James and L. de Lavallade, private communications.

[3] A. K. Brignet, A. Burton, E. Carlier, J. H. Dieperink, B. Goddard, M. Laffin, M. Lamont, V. Mertens and H.
Verhagen, The Evolution of LEP Separator Controls in the Wake of the Bunch Train Project, CERN SL/Note 95-47
BT).

[4] B. Balhan, A. Burton, E. Carlier, J.-P. Deluen, J. H. Dieperink, N. Garrel, B. Goddard, R. Guinand, W. Kalbreier, M.
Laffin, M. Lamont, V. Mertens, J. Poole and H. Verhagen, Modification of the LEP Electrostatic Separators Systems
for Operation with Bunch Trains, Proc. 1995 Particle Accelerator Conference and International Conference on High-
Energy Accelerators, Dallas, USA, May 1 - 5, 1995, CERN SL/95-45 (BT).

[5] V. Mertens, A. Aimar and E. Carlier, A Simple Generic Software Tool Kit for Distributed Controls Applications,
Proc. International Conference on Accelerators and Large Experimental Physics Control Systems, Berlin, Germany,
October 18 - 22, 1993, Nucl. Inst. Meth. A352(1994)427, CERN SL/93-49 (BT), and World Wide Web URL
http://dxbt00.cern.ch/ts/ts_papers/berlin93.html.

[6] A. Aimar, E. Carlier and V. Mertens, An User- Friendly Approach to Process Control Software in the Framework of a
Generic Tool Kit for Distributed Application, Workshop on Workstation & Software Tools for Automatic Control,
Prague, Czech Republic, October 26 - 27, 1993, CERN SL/93-50 (BT) and World-Wide Web URL
http://dxbt00.cern.ch/ts/ts_papers/prague.html.

[7]1 V.Mertens, Menu - A Multi-Platform Alphanumeric User Interface - Version 2 User Guide, CERN SL/Note 95-107
(BT) and World-Wide Web URL http://dxbt00.cern.ch/menu.html.

[8]1 A. Aimar, E. Carlier, C. Cameron, A. Ferrari, B. Goddard, M. Laffin, V. Mertens and M. Tyrrell, Centralised

. Equipment Surveillance Using a Configurable Software Tool Kit as Front-End to CERN Alarm System, CERN

SL/95-34 (BT).

592

DESIGN OF THE BEAM ORBIT FEEDBACK SYSTEM FOR THE
TRISTAN LIGHT SOURCE STUDY

T. Mimashi, A. Akiyama, H. Fukuma, M. Tobiyama
KEK, National Laboratory for High Energy Physics
1-1 Oho, Tsukuba-shi, Ibaraki-ken 305, Japan

S.Yoshida
Kanto Information Service
8-21 Bunkyo, Tsuchiura-shi, Ibaraki-ken 305, Japan

ABSTRACT

A beam orbit feedback system was designed and built for the TRISTAN Light-Source Study. Some of the
experiments which use TRISTAN Main Ring as a synchrotron-light source require very high beam position
and slope stability. The beam orbit feedback system eliminates oscillations of the beam in time at the center
of an undulator. The feedback system is composed of 2 single-path beam monitors and 4 each of horizontal
and vertical steering magnets. The control system was built with EPICS.

INTRODUCTION

TRISTAN, the electron-positron colliding ring for high energy physics, has been in operation since 1986. The
experiments with this facility were completed in June 1995 and the TRISTAN Main Ring was altered to be
utilized as an extremely intense and highly advanced light source facility. An undulator was installed for pur-
poses of study, with experiments planned from September to December 1995 [1][2]. In order to provide high
quality light to the experiments the accelerator must satisfy tight tolerances and have low emittance and high
current. The beam orbit feedback system was designed to satisfy one of these requirements, the stability of
the beam position and slope at the light source point.

THE REQUIREMENTS FOR THE FEEDBACK SYSTEM

Since our beam line is long (about 100 m), the requirements for stability of beam position and slope are rel-
atively tight. Figure 1 shows them for several experiments.

Experiments Position Stability Slope Stability
Horizontal Direction All + 1500 (pum) + 15 (urad)
Vertical Direction Muscle fibers + 500 (pum) 10 (urad)
The microbeam 4+ 50 (um) + 10 (urad)
Solid wave + 100 (um) + 5 (urad)
X-ray parametric scatterin‘g‘ + 50 (um) ‘ +10 (prad)
Nuclear resonance scattering + 500 (um) +5 (nrad)

Fig. 1 Requirements from each experiment

593

In order to design the feedback system, we first measured relatively slow closed orbit distortions (timescale
from 10 minutes to 8 hours) and fast beam vibrations (from 3 to 100 Hz). From the closed orbit distortion
measurement, assuming that the orbit distortion was caused by the change of a quadruple magnet position,
we can estimate that magnets move 1.7/2.6 um (at the one sigma level) in the horizontal/vertical direction
over 8 hours. This corresponds to the light source position moving 48/94 pm (r.m.s.) in the horizontal/vertical
direction and the slope moving 14/21 prad (r.m.s.). The fast beam vibration (3 to 100 Hz) was also measured.
The beam position vibrates 0.22/0.40 pm in the horizontal/vertical direction at 5 Hz and the corresponding
slope changes 0.05/0.08 prad. From these measurements we thus conclude that we can ignore the fast beam
vibration.

FEEDBACK DESIGN

Figure 2 shows a schematic of the feedback system. For H, to approximate both the response of the steering
magnets and an eddy current effect of the vacuum chamber, we write the transfer function as:

1 - 85
1 s+ 85
85s+1

where 1/85 comes from the measured field of the steering magnets and s is the usual imaginary angular fre-
quency (s=iw). The Z-transform, appropriate for discrete time sampling, is:

~aT
[

HE) = 12— (z-¢™)

where a=85 and T is the sample time. Similarly the Z-transform of the control function becomes:

1
w{1-3)
T A

1 T
T1-;)

where K, Ty and Tp, are constants. The three terms inside the large parentheses are the familiar proportional,
integral and differential contributions. Finally the closed loop gain as a function of disturbance frequency (f)

G(z)-§1+

can be written as:
disturbance (d) |1+ H(z)+ G(z)l
e(error)
x o Control | 1 P.S. + Mag B
Al Y ntro Holder + Vac Cham = >
(1-e*Tys 85/(s+85)
d (Disturbance) Vacuum Chamber

BPM —O-

Fig. 2 Schematic view of the feedback loop

594

HARDWARE IMPLEMENTATION

Figure 3 shows a rough sketch of the beam line around the undulator. The STFH and STFV are the horizontal
and vertical steering magnets of the feedback system and the STH and STV are normal horizontal and vertical
steering magnets. The beam position and slope at the center of the undulator are calculated from the two re-
cently implemented beam position monitors that are installed on both sides of the undulator and are adjusted
with 4 each of vertical and horizontal steering magnets.

Steering magnets

In order to get fast response, laminated iron-core magnets were used for steering. They were designed to con-
trol the beam position to 1500 pum in the horizontal direction and 5 um in the vertical, which correspond to
kick angle accuracies of 150 prad horizontal and 5 prad vertical. In order to get these slope accuracies at the
center of undulator, the steering magnet kick angles must be good to 7.5 prad/2.5 prad.

Fig. 3 Schematic view of the beam line around the undulator

Beam position monitors

Two new monitors can measure turn by turn beam positions. Figure 4 shows a block diagram of the read-out
system, based on the AM/PM method [4], with 10-bit digitizations. In order to measure the beam position
with an accuracy of 50 pm, 100 turn data are accumulated in the memory and used to calculate the beam po-
. sition. : .

Phase
r—> >l >‘>| >"> Detect.
C—'— —) BPF AMP AMP COMP f-‘DC
— T EX-OR Memory
- D> | R

BPF AMP /2 AMP COMP :
/2 Revolution Clock
22dB popriq 34dB 100kHz

Fig. 4 Block Diagram of the AM/PM method beam monitor readout system

CONTROL SYSTEM

The control system was built based on EPICS; Figure 5 is a block diagram. One VME board (Force 25MHz
clock CPU40) and an HP9000/755 were used as control computers. To build the control system some EPICS
tools were used. The graphic user interface was written in MEDM, and beam position/slope data were col-
lected by EPICS archive tools. Although EPICS sequencer supports data update of up to 60 Hz, we extended
this to 200 Hz by using the auxiliary clock of the VME CPU board.

595

Ethernet

|
O Set Current
. .
I0C -
Workstation (VME Power Steering
VxWorks) CAMAC Supply Magnet
Beam Position ON/OFF/RESET

Monitor

Fig. 5 Block diagram of the control system

FEEDBACK SYSTEM PERFORMANCE

Figure 6 shows a preliminary result of the beam orbit feedback system performance. The feedback frequency
was set to 100 Hz and the beam position and slope were calculated with 100 turn data. Figures 6 (a) and (b)
show vertical beam positions when the feedback was off/on. Figures 6 (c) and (d) show the corresponding
slopes. When the feedback was turned on the beam positions could be made stable within + 30 pm in both

directions, and similarly the slope within 5 prad.

CONCLUSION

The beam orbit feedback system was built to make the position and slope of the beam stable at the center of
an undulator. The control system was designed based on EPICS. When feedback was turned on the require-
ments for beam stability were satisfied.

REFERENCES

[1] "The Tristan Super Light Facility Conceptual Design Report 1992", KEK Progress Report 92-1

[2] S.Kamada et al., "Accelerator plan for a light-source study at the TRISTAN MR", Rev. Sci. Instrum, 66
(1995) p. 1913 .

[3] L.R.Dalesio et al.,"EPICS Architecture”, ICALEPCS 91, KEK Proceedings 92-15 (1992) p. 278

[4] S.P.Jachim etal.,"An RF Beam Position Measurement Module for the Fermilab Energy Doubler", IEEE
NS-28 (1981) p. 2323

596

=—o—vorucal Beam Posiuon (mm
o-l L) LR L] LELEE B L RS LS LA
,g 'E‘ [I |
£ £
1 2
g
& &
2 3
£.1
0 K 'S
Time (Hours) : Time (Hours)
(a) (b)
Feedback Off Feedback On
| =e=Vertical Baam Slope (mrad) }
006 I—.—wd:d.b. sbpbhld)l
] 0.02
0065 .
o] oo
g 007 b
g 5 oo !
0075 by
& & 0005
v -
008 u
H i 0
.-g 0085 E 0,005
% 8 ~ .
£ o009 1 % o0l : :
’ > b
0095 0015
PR TS FYI FUURN UV AV FUPR PPN YO 002

0 1 2 3 4 S5 6 7 8
Y 1 2 3 4 3 6 7 8

Tirne (Houss) Time (Houss)

(c) (d)

Fig. 6 Vertical beam position and slope at the center of undulator

597

Monitoring Commercial Conventional Facilities Control with the APS Control
System - The Metasys-to-EPICS Interface

G.J. Nawrocki, C. L. Seaver, J.B. Kowalkowski
Advanced Photon Source
Argonne National Laboratory

ABSTRACT

As controls needs at the Advanced Photon Source matured from an installation phase to an operational phase, the
need to monitor the existing conventional facilities control system with the EPICS-based accelerator control system
was realized. This existing conventional facilities control network is based on a proprietary system from Johnson
Controls called Metasys. Initially read-only monitoring of the Metasys parameters will be provided; however, the
ability for possible future expansion to full control is available. This paper describes a method of using commercially
available hardware and existing EPICS software as a bridge between the Metasys and EPICS control systems.

THE APS CONVENTIONAL FACILITIES CONTROL SYSTEM

The contractor selected for conventional facilities control was Johnson Controls, an environmental control system
contractor familiar to many institutional and industrial facilities. This control system, called Metasys, is installed
throughout the APS site.

Metasys is a distributed system of intelligent I/O processors, called network control modules (NCM), for control and
monitoring of environmental and HVAC parameters. The data link and physical layer of this distributed system uses
ARCNET for I/O processor intercommunication as well as the link to operator workstations for the human interface.
This ARCNET-based communication path is called the N1 LAN [1]. As with many industrial control systems, the
communication protocol and software for this system are proprietary to the manufacturer.

It should be noted that the NCM modules themselves have a subnet for communication to smaller distributed /O con-
trol processors. This subnet, called the N2 Bus, is for communication between I/O processors only and does not pro-
vide an interface to an operator workstation [1].

The software native to the Metasys control system is called the Metasys Facilities Management System (FMS). The
FMS is configured via the operator workstation, a PC-compatible computer running the Metasys Person Machine
Interface (PMI) software. Physical control parameters, such as an individual temperature sensor or the on/off status of
a certain water pump, are mapped to analog or binary Metasys objects. Associated with the Metasys objects are
parameters which govern such elements as units (analog objects have single unit parameters, binary objects have two
unit parameters, one each for the logical “1” and logical “0” values), display precision (analog only), object status
(binary only), and of course the present value of the object [2].

A collection of Metasys objects is referred to as a Metasys system. The entire APS conventional facilities control

system can be viewed as a tree of Metasys system directories containing files representing Metasys objects. The cur-
rent software release of the Metasys File Management System at the APS allows for a maximum of 50 Metasys objects

per Metasys system.
THE APS ACCELERATOR CONTROL SYSTEM

The accelerator control system at the APS is a distributed, networked system based upon the standards of EPICS [3].
It provides elaborate control and monitoring of all aspects of accelerator operation. Applications written specifically
for EPICS provide facilities for data acquisition, back up and restoration of accelerator parameters, as well as the han-
dling of alarms generated by the control system.

EPICS provides for VME-based input/output controllers IOCs) to be distributed throughout the facility and intercon-
nected via Ethernet to one another and also to UNIX-based operator interface (OPI) consoles [3]. This control system

598

operates and monitors all functions of accelerator systems such as magnet power supplies, vacuum pumps, and beam
position monitors.

Physical I/O points in EPICS are mapped to “process variables.” Each of these process variables has parameters asso-
ciated with it which define display and alarm parameters as well as the actual value of the process variable. These
parameters are called fields. A collection of process variables in EPICS is referred to as a “database.” The database is
loaded into the IOC associated with the physical /O point hardware. Process variable fields are available to other
I0Cs and OPIs via a communication protocol called channel access [3].

It is clear that the initial step in interfacing the Johnson Controls Metasys System to EPICS is to provide the requisite
hardware and software links so that the Metasys object parameters could be mapped to EPICS process variable fields.

THE METASYS NETWORK PORT

The Metasys network port is a device which allows monitoring and controlling of the Metasys Facilities Management
System from a third-party computer system. The network port emulates an Allen-Bradley PLC-5 and will exchange
FMS data with a system that communicates with Allen-Bradley PLC-5 Word Range Read, Word Range Write, and
Read-Modify-Write commands [2].

The network port must be actively programmed to map Metasys objects to the Allen-Bradley PLC-5 syntax. Up to
800 analog Metasys objects may be assigned to the PLC-5 syntax F8:0 - F8:799. Only the present value parameter of
an analog object is available in four-byte analog words. Up to 3200 binary Metasys objects may be assigned to the
PLC-5 syntax B3:800 - B3:3999. Binary Metasys object information is available in two-byte binary words. Individual
bits of this binary word can be parsed to read such binary object parameters as present value and the status parame-
ters: on-line / off-line, defined / undefined, and reliable / unreliable status. Status parameters for analog objects are
available for F8:0 - F8:799 from B3:4000 - B3:4799, respectively. The present values of these binary objects are

- meaningless [2].

The active programming of the network port is accomplished with the Metasys Person Machine Interface (PMI) soft-
ware. The process involves copying the existing Metasys objects one wishes to monitor from its location in the FMS
directory structure of Metasys systems into a directory structure of Metasys systems native to the network port. This
can become quite tedious for a large number of Metasys objects and is bound by the finite number of Metasys objects
the network port can translate to PLC-5 syntax.

Physically the network port communicates with the Metasys network via ARCNET and appears much like a network
control unit as a N1 LAN node. Communication to the PLC-5 system is accomplished via RS232 using the Allen-
Bradley Full-Duplex Data Link Layer Protocol (DF/1) at a data rate of 9600 baud.

THE PLC-5 LINK TO METASYS

Since the Metasys network port emulates the communication of a PLC-5 and intercommunication between PLC-5
modules is easily accomplished with a Data Highway DF/1 protocol link, a PLC-5 module was programmed so that
the data to be monitored from the Metasys network is initially gathered by an Allen-Bradley PLC-5 module. The
PLC-5 was placed in a 1771 /O chassis and connected to the network port. Since the PLC-5 processors communicate
via the Allen-Bradley Data Highway and the Metasys network port communicates via an RS232 interface, there was
an additional piece of hardware required, the Allen-Bradley 1770 KF2.

THE ALLEN-BRADLEY 1770-KF2

The Allen-Bradley 1770-KF2 module is a passive intelligent device which allows communication between the Allen-
Bradley Data Highway and an intelligent asynchronous device programmed to handle the DF/1 communication pro-
tocol. Electrically the 1770-KF2 connects to the Allen-Bradley Data Highway in the standard multi-drop configura-
tion, with the Data Highway station number set via DIP switches. Electrical connection to the asynchronous device is
via RS232 or RS422, at data rates of up to 9600 baud [4]). The 1770-KF2 was used to electrically connect the Data
Highway from the network port to the PLC-5 processor.

599

FIGURE 1. The METASYS-to-EPICS Link, a Hardware and Software View
HARDWARE SOFTWARE

1/O Device
Example: Pump

— Metasys /O 1/0 Device
Processor

/O Device

N2 Bus: To other
Metasys 1/0 Processors

Metasys Network | | Metasys Network
Control Module Control Module

1
N1 LAN: To other

Metasys Network
Control Modules

Allen-Bradley }D)ata gighway. _
1770-KF2 eer Communication

Interface

Allen-Bradley
PLC-5 Processor

Allen-Bradley
Direct Communication
Module

Allen-Bradley 1771 IO Rack
Data Highway Remote 1/0 Interface

Allen-Bradley VME Remote
110 Scanner

THE PLC-5 AS A BRIDGE TO EPICS

In addition to the PLC-5, a 1771-DCM Direct Communication Module also resides in the 1771 I/O chassis. The
DCM module provides the communication link to the APS control system with existing EPICS device support [5].
The PLC-5 is programmed with a Rockwell Software PLC-5 Development Software package. This ladder logic pro-
gram reads the Metasys data which has been syntactically converted to PLC-5 binary (B3) and analog (F8) data rep-
resentation by the network port via the Data Highway Peer Communication Interface. This data is then block
transferred to the 1771-DCM on a time repetitive basis ensuring that the DCM module receives fresh data as read
from Metasys. This repetition need only be fast enough to refresh the data every ten seconds. This is due to a time
limitation on the N1 LAN data update of the Metasys network port. The DCM is then read over a Data Highway
Remote I/O Protocol connection to an EPICS IOC with an Allen-Bradley VMEbus /O scanner. The data read from
the Johnson Controls conventional facilities control system may now be used in EPICS displays, alarm handling
applications to warn of impending failures, and data acquisition techniques familiar to operators and accelerator
physicists. Currently this interface is configured for read-only access of Metasys data. Modification for the control of

600

Metasys conventional facilities parameters from EPICS is easily accomplished with changes in the PLC-5 ladder
logic program.

SUMMARY

Figure 1 summarizes the network which provides the link between the EPICS-based accelerator control system and
the METASYS-based conventional facilities control system at the APS. It is intended that this system will provide a
vital link for data acquisition and monitoring so that correlations may be made between accelerator operation and
environmental parameters.

ACKNOWEDGMENTS

This work was support' by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-
31-109-ENG-38. Metasys is a registered trademark of Johnson Controls Inc. ARCNET is a registered trademark of
Datapoint Corporation. PLC-5 is a registered trademark of Allen-Bradley Corporation.

REFERENCE
[1] Johnson Controls Inc., Metasys Interface Specification, 1994.
[2] Johnson Controls Inc., Metasys Network Technical Manual 636, Network Port Section, Technical Bulletin, 1992.

[3] W. McDowell, M. Knott, F. Lenkszus, M. Kraimer, N. Amnold, R. Daly, “Status and Design of the Advanced Pho-
ton Source Control System,” Proceedings of the 1993 Particle Accelerator Conference, pp. 1960-1962, 1993.

[4] Allen-Bradley Inc., Allen-Bradley 1770-KF2 Reference Manual, Publication 1784-6.5.3-DU3, 1988.

[5] J. Stein, C. Seaver, G. Nawrocki, M. Kraimer, “Data Exchange from Allen-Bradley PLC-Based Systems to
EPICS,” these proceedings.

601

The Control System Database for the DO Detector

Laura Paterno, Stuart Fuess, Stan Krzywdzinski
Fermi National Accelerator Laboratory
Batavia, IL. 60510, USA

Harrison B. Prosper
Florida State University
Tallahassee, FL, 32306, USA

ABSTRACT

A central control system database has been used in the monitoring and control of the D@ experiment. The
database stores all of the essential attributes of the hardware and provides on-line data acquisition processes with
the access information required to read from or write to the hardware. It contains information on detector systems,
low and high voltage power supplies, cryogenics monitoring, argon purity monitoring and environmental
conditioning. The database serves as the master copy of local databases which reside in front-end computers. It is
a relational database, implemented using DEC VAX Rdb/VMS. Utilities were provided for updating and accessing
the database, either interactively or in a batch mode. To speed up access in the on-line environment, a read-only
copy of the database is maintained and updated every day; detached server processes with sufficient resources
provide processes with fast uninterrupted read-only access. Merits and drawbacks of the present system are
discussed along with possible enhancements for the future.

1. INTRODUCTION

The D@ detector [1] at the Fermi National Accelerator Laboratory was constructed to study proton-antiproton
collisions at a center-of-mass energy of 2 TeV. The detector consists of three nested shells. The innermost shell
contains the central tracking and transition radiation detectors; surrounding these is the calorimeter, and
surrounding the calorimeter is the muon detector. Combined these detector subsystems consist of ~100,000
channels. The monitoring and control of the channels of the detector as well as collection of physics data was
accomplished through the D@ data acquisition system (DAQ), which was designed with two independent data
paths for communication [2]. We will not discuss the physics data path in this paper.

Because of the large number of channels to control and monitor, a mechanism was needed to keep track of all the
information for each channel: the D@ control system database. The database, known as the Hardware database
(Hdb) [3,4], is a relational database implemented using DEC VAX Rdb/VMS. It was designed to provide access
path descriptions to Control Data Acquisition (CDAQ) [5] processes as well as nominal settings with their
associated tolerances, and descriptions of each device. Currently, the database contains ~5,000 devices which
describe the channels of the detector.

The information from the database is downloaded to front-end processors which are either Motorola 68020
processors in VME crates or IBM PC processors. Each processor has its own local database which is updated
from the master Hdb database. The local databases contain the access information and alarm conditions for all the
devices that the processors monitor and control. The processors use the alarm information to monitor the hardware
for failures and notify the on-line data acquisition system when changes of state occur in the system, that is, when
a device enters into or leaves the alarm conditions.

In the following sections we discuss the organization of the Hdb database, the utilities used to maintain and access
it, the merits and drawbacks of the current database and future enhancements under consideration for the 1999 run

of the D@ detector.

602

2. DATABASE ORGANIZATION

2.1 Structure of the database

The database is relational in form and has a variety of capabilities that the DEC Rdb/VMS environment provides
(concurrency control, data integrity, security, data independence, a data manipulation language, query
optimization, remote access, etc.) as well as management utilities (RMU, RdbExpert, DECTrace). The database
maintains data in a two-dimensional tabular format with ‘flat’ computer files. A table (or relation) contains a
number of rows (or records) which are instances of table elements; the rows consist of columns (or fields) which
are data elements and represent attributes of the table.

The Hdb database, as seen in the Entity-Relationship diagram in Figure 1, currently contains 39 tables which
describe the hardware devices and their relationships in the detector. The boxed area contains the tables which
hold all of the access and alarm condition information for the hardware devices. The other tables are used to
describe relationships between the devices. '

MUON CELL

VERTEX CELLSCLASS

(CENDFT CELLSCLASS

TRAN RAD CELLSCLASS
DEVICESEQUIPMENT
:
=
EQUIPMENT

Figure 1 - The Entity-Relationship Diagram of the D@ HDB Database

The individual boxes represent the tables of the database and the connecting lines represent the relationships
between the tables. A line with no arrows indicates a one-to-one relationship; a line with arrows means a one-to-
many relationship. For example, a device can have one or more attributes associated with it but an attribute can

have only one alarm associated with it.

2.2 Devices

603

Central to the Hdb database is the notion of a device. A device may represent any physical hardware object in the
detector or in the on-line software. The device may contain any number of monitoring and/or control channels.
For example, a power supply is a device because it has voltage or current output which can be monitored and
controlled. Only the access information necessary to read and/or write to the physical device is represented in the
database. It can (and does) contain some default values used to control the device.

Distinct properties of a device are represented as attributes. An attribute may describe analog or binary monitoring
and control points of the device. It contains access information which enables CDAQ processes to request
readings or settings to devices through the front-end processors. They also have associated alarm information
which is loaded into the front-end processors. Devices and their associated attributes were carefully named to
provide an easy association between the database objects and the physical devices they represented.

Many of the D@ detector electronics systems contain the same kinds of physical devices (power supplies,
temperature monitors, etc.). The monitoring and control channels for these devices are described in the database
using structured attributes [6]. The common data for the similar devices was placed into a set of ‘elementary
devices’, which were only entered once. These elementary devices are then referenced by structured attributes of a
device through the field table. This made the database more modular in structure and required less data to be
entered into the database.

3. UPDATING AND ACCESSING TOOLS

3.1 Updating Tools

Three programs were used to update the Hdb database: HDBatch [7], HDBrowser [8], and HDB Entry [9]. They
were written in C or FORTRAN with either embedded RDML or SQL statements used to access the database. The
programs provided a variety of services to their target clients including browsing, listing, entry, modification, and
deletion of the devices in the database. '

The initial loading of the database was done using HDBatch. This utility uses text files which may be created with
the HDBedit command which invokes the VAX Language Sensitive Editor (LSE) with a special environment
which contains all the HDBatch commands. The files described the devices to be loaded into the database and
HDBatch updates the database either interactively or through a batch job running under the VAX/VMS operating
system. The utility was written in C and calls low level access routines [4,10,11] to create, delete, modify and list

requested devices.

The HDBrowser program uses the VAX Forms Management System (FMS) to display forms whose fields
represent data fields in the database. Because the program is interactive, users can see what they are currently
entering or have previously entered into the database in a layout which is easy to understand. The program also
uses the same low level access routines as HDBatch.

The HDB Entry program was designed to allow easy creation of multiple devices of identical type. It was written
in FORTRAN with embedded SQL statements. A portion of the code was generated from the structure of the
database. In other words, if the database was changed, the code which dealt with the actual access to the database
could be regenerated automatically. The program has both an interactive and batch mode interface. The
interactive mode was written using the VAX Screen Management facility (SMG).

3.2 Database Access Utilities

There are two layers of routines provided to access the Hdb database. The first consists of low level routines:
create, delete, modify and view procedures for each table in the Hdb database. The routines exist in a shared
image library. Thus, if changes need to be made to the implementation of any routine, all clients of that routine
automatically get the changes without recompiling or relinking their code. All of the routines are used by the
HDBatch and HDBrowser programs; only the view routines are used by the second layer of access routines.

The second layer of routines is called the Database Services (DBS) package [12]. The DBS routines were written
in PASCAL with calls to the low level C routines. They were designed to make it easy for the CDAQ processes to

604

get the information they need. There are also a few routines used by non-CDAQ processes to obtain descriptions
of the devices in the database for the purpose of displaying that information. This has helped experimenters to
diagnose hardware failures that have occurred during data taking. The Hdb server processes described below also
use these routines.

4. SERVER PROCESSES

During the early running of the D@ detector it was discovered that access times to the database were slow. Client
processes which downloaded detector constants to the front-end processors often doubled their normal execution
times. The problem was traced to writers making frequent modifications to the database. They effectively locked
out all processes interested in just obtaining information from the database while they were writing. Fast access to
the database also necessitated processes having more system resources and quotas available to them.

Two improvements to the system alleviated these problems and reduced program execution times to acceptable
levels. Since restricting modifications to the database was not an option, a read-only copy of the database was
created and then updated daily. It solved the problem of writers affecting access times and -also served as a natural
backup to the master read-write database. The second improvement was the creation of the Hdb server processes.
The servers are detached processes which have the necessary resources and quotas. They keep the database
permanently opened to clients. Normal DBS access routine calls in a client application are replaced by ones which
send messages (via an InterTask Communication (ITC) package [13] layered over DECNET) to the server. The
server performs the database access and returns the results to the client process.

5. APPLICATION PROGRAMS

5.1 Downloading

Before data taking (running) commences, the detector control system must be downloaded with the appropriate
hardware device settings. A master synchronizing program accesses configuration files that describe the run
parameters and converts them into a sequence of commands, interpreted by multiple instances of the downloading
program which execute in parallel. The downloading program parses the commands and accesses the database
through CDAQ routines to perform the settings. Typical cold-start downloading times average 7 to 9 minutes.
Run-to-run changes can be performed in less than 3 minutes.

5.2 Monitoring and control

There are a variety of programs which perform general utility or subsystem specific monitoring and control
functions. Many of these programs access the database through CDAQ services. Examples include: (1) a program
to periodically monitor a set of devices in the detector and log the readings for later trend studies, (2) programs to
monitor and control various power supplies, (3) low level programs which monitor and access any device and
display the readings as a bar graph or a time trend on a strip-chart graph, and (4) a program that synchronizes the
triggering of the detector. Another program, which displays significant event changes in the system, accesses the
database directly through the DBS package.

6. ADVANTAGES AND DISADVANTAGES OF THE CURRENT DATABASE

The current database system provided very stable, reliable, and efficient service through the 4 years of DG
running. No data corruption occurred during this entire period which can be attributed to the use of a well
documented and supported commercial database. The database server process enabled clients to get quick, read-
only access to device information without the need for additional resources in order to obtain fast access times.
This helped to improve the downloading times for the D@ detector and reduced the amount of physics data which
would otherwise have been lost if downloading times were slower. The use of both a read-write and read-only
database enabled writers to update the database without slowing down the readers of the system. This also
improved the downloading time as writers may block out access to readers while updates are going on.

605.

There are of course disadvantages to the system as well. Only 12 out of the 39 existing database tables are actually
used. This was because not enough manpower was available to update them and the need for the other information
was never critical. The database updating programs also have flaws. They are either too slow (HDBatch and
HDBrowser), the interface can only be understood by an expert (all), or a full set of services was not provided

(HDB Entry).
7. FUTURE CONSIDERATIONS

The present system has been reliable due to the capabilities and data integrity provided by a commercial database
product. Experience with non-commercial databases was not always positive. The products experienced data
corruption problems and required much more manpower than the commercial solution. A commercial database
package with all the present features of DEC Rdb will be a critical requirement for the future database.

The D@ collaboration is considering what upgrades can be made to the experiment. The upgraded detector will
have approximately 10 times more channels to monitor and control. This puts strong requirements on database
access times to ensure fast downloading of all detector constants. Server access to the database for time-critical
clients will be essential in view of the success with the present database server and our decision to switch to a
multi-platform environment.

The database itself will be restructured in line with to the new detector subsystems. These new systems will have
thousands of identical channels with only slightly different address access. This will require rewriting all the
database updating and accessing software. A single integrated tool that is intuitive to the users (hardware experts)
and not modeled on the database definitions would be preferable. The tool should be written in a single language
with one database query language embedded for ease of maintenance. It will also have to run on the different
platforms that D@ supports.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the considerable contributions of the members of the Accelerator and
Computing Divisions of the Fermi National Accelerator Laboratory as well as those of the D@ Collaboration.

REFERENCES

[1]S. Abachi, et al., (Fermilab PUB93-179-E) Nucl. Instr. and Meth. A338 (1994) 185.

[2] S. Ahn, et al., (Fermilab PUB93-324-E) Nucl. Instr. and Meth. A352 (1994) 250-253.

[3]1 M. Frey and A. Waller, D& Hardware Database, D@ Note 821 (1988) unpublished.

[4] M. Frey and A. Waller, D& Design Notes-The Hardware Monitor Database, D@ Note 824 (1988)
unpublished.

[51J.F. Bartlett, S. Fuess, & H.B. Prosper, User’s Reference Manual for the D& Control Data Acquisition
Services, D@ Note 866 (1988) unpublished.

[6] S. Krzywdzinski, Structure Type Devices in HDB Database, D Note 1279 (1991) unpublished.

[71 A. Waller, HDBatch: Batch Entry Program for the Hdb Database, D@ Note 915 (1990) unpublished.

{8] M. Frey, HDBrowser: Interactive Entry Program for the Hdb Database, D@ Note 879 (1989) unpublished.

[9] L. Paterno, H.B. Prosper, & R. Raja, The D& Hdb Entry Program, D@ Note 1512 (1993) unpublished.

[10] M. Frey, Hdb Database User’s Guide - C version, D@ Note 822 (1988) unpublished.

[11] M. Frey, Hdb Database User’s Guide - FORTRAN version, D@ Note 823 (1989) unpublished.

[12] S. Krzywdzinski, User Reference Manual for HDB Database Services, D@ Note 1280 (1993) unpublished.

[13]]. Featherly, InterTask Communications package (1989) unpublished.

606

A Generalized Correlation Plot Package for the CEBAF Control System*

D. Wu, W. Akers, S. Schaffner, H. Shoaee, W. A. Watson, D. Wetherholt
Continuous Electron Beam Accelerator Facility, Newport News, VA 23606 USA

ABSTRACT

The Correlation Package is a general facility for data acquisition and analysis serving as an online environment for per-
forming a wide variety of machine physics experiments and engineering diagnostics. Typical correlation experiments con-
sist of an initial set of actions followed by stepping one or two accelerator parameters while measuring up to several
hundred control system parameters. The package utilizes the CDEV [1] device API to access accelerator systems. A variety
of analysis and graphics tools are included through integration with the Matlab math modeling package. A post- acquisition
script capability is available to automate the data reduction process. A callable interface allows this facility to serve as the
data acquisition and analysis engine for high level applications. A planned interface to archived accelerator data will allow
the same analysis and graphics tools to be used for viewing and correlating history data. The object oriented design and
C++ implementation details as well as the current status of the Correlation Package will be presented.

INTRODUCTION .

The tasks of commissioning and optimizing the performance of an accelerator require performing many machine experi-
ments involving the acquisition and online analysis of a large amount of data. This data is usually obtained from a diverse
and disparate array of devices, instruments and processes. Each source of information or data may have its own unique
acquisition characteristics or control idiosyncracies, e.g., the required settle time between changing a magnet setpoint and
reading a downstream BPM, or the synchronization of the motion of a wirescanner with successive beam samplings. Ad-
ditionally, most experiments involve a myriad of activities which extend beyond simple data acquisition. This includes
complex instrument and experimental setup prior to data taking, monitoring of some control system parameters for condi-
tional data acquisition (e.g. recording BPM data only if sufficient beam current is present), intermediate evaluation of the
results and finally a post experiment set of activities including analysis, graphics, and data archiving.

The objective of the development of the Correlations Facility has been to provide accelerator users with an integrated en-
vironment for performing a large array of machine physics and engineering diagnostics experiments with uniform access
to practically all available machine data. The generalized data acquisition capability of this package provides automatic
and transparent access to new data types and sources as they become available within the control system, without the need
to rebuild any components of the correlation software. Similarly, within this environment one has the flexibility to auto-
matically vary any system parameter that can be manually adjusted via the control system.

Additionally, by designing the system around a data acquisition engine, we have provided the capability for using this en-
gine in any high level application or automation procedure, such as emittance measurement or cavity gradient calibration,
which requires controlled data acquisition and analysis.

The Correlation Package was inspired by SLAC’s Correlation Plot software[2] and provides many of its features. However,
its implementation and capabilities reflect the advances in the fields of software engineering, graphics, user interface and
math modeling since that pioneering package was developed.

PRINCIPLES OF OPERATION

A typical accelerator physics experiment consists of several steps of the following nature:

* A pre-experiment setup stage which may include turning on devices or facilities, calibrating, status checking, etc.
« A control stage involving varying the setpoint of one or many devices over a desired range.

» An interim period between control and data acquisition when the experimenter may perform a set of tasks or ac-
tions including waiting for a length of time (e.g., for the transients in the control device to die out), checking the
status of any control system signal, executing some stand-alone programs or scripts (e.g., to initialize or prepare
the data acquisition equipment), and finally, deciding to proceed or to abort based on certain observed conditions.

* A data acquisition step Whereby up to several hundred control system signals are sampled and recorded.
* A post experiment set of activities including analysis, graphics, resetting devices, saving results in a database, etc.

607

To accommodate these requirements for an integrated package, the correlation facility has been implemented in terms of
several key concepts or module: .

* A control module capable of stepping the setpoints of one or many control system devices, such as corrector
strengths, cavity phases, or feedback setpoints.

* A data acquisition module for recording any available control system signal such as beam orbits from BPMs,
RF parameters, feedback measurement and control parameters.

* An action module capable of performing a variety of tasks including synchronized and time delayed data acqui-
sition, executing stand-alone programs or scripts, evaluating conditions based on machine and beam states for
continuing or aborting an experiment, and performing many control system actions such as calibrating BPMs.

* A graphics module for displaying any sampled data against any sampled or stepped variable. In the near future,
this module will also perform a variety of signal analysis and curve fitting functions on the sampled data.

To facilitate using the correlation package as an embedded engine in high level applications requiring controlled data ac-
quisition, we developed a portable Correlation Engine encapsulating the control, data acquisition and action modules.
Figure 1 illustrates the functional components of an experiment as performed with the Correlation Engine.

Correlation Engine
Steps of a correlation experiment:

= Perform a set of pre experiment actions which

time delays (settling time). Post-Step

Actions

may include turning on devices or facilities, cal- S
ibrating, status checking. Pre-Step |

« Step the setpoint of a list of devices over a de- !
sired range, each optionally preceded and/or Step List |
followed by a set of actions including specified |

I

-

- Perform a set of actions between stepping and
sampling, including time delays, status check-
ing, executing programs or scripts (e.g., to ini-
tialize the data acquisition equipment), and

finally, deciding to proceed or to abort based 5

on certain observed conditions. Pre-Meas. |
Actions

« Record a list of control system signals, each !

optionally preceded and/or followed by an ac- Measurement List [l

tion list. |

» Perform a post experiment set of activities in- Post-Meas I

cluding analysis, graphics, resetting devices, e —_—a
saving results in a database, etc.

Figure 1: Anatomy of A Correlation Experiment

DATA ACQUISITION INTERFACE

XACT (X-based Accelerator Correlation Tool) is an X11/Motif based graphical user interface (Figure 2) for performing
correlation experiments. It is the first application software using the Correlation Engine as an embedded facility. From this
interface one may specify step and sample variables, action lists and other acquisition and control parameters, It is also a
control panel for starting and stopping experiments as well as saving the experimental setup and the acquired data to files

for later recall and analysis.

608

Device Selection
All signals names specified as step or sampled variables are validated against the control system. Validation can be tog-

gled on and off through the pull-down “Option” menu. One may also use wild cards in specifying signal names in which
case a list of all matching signals will be presented. You may choose one, many, or all available signals.

Step and Sample Variables
Users may select up to two step variables although the Correlation Engine allows unlimited number of step variables.
Available variables include all control system signals including

+ magnet setpoints

« RF setpoints

» Feedback parameters

« Multidevice knobs (composite devices)
A special device keyword, INDEX allows sampling signals without stepping any device. Selecting INDEX as step vari-
able coupled with time delays between samples (entered via action commands), provides a flexible facility for recording
the time history of signals. Currently, a stepped device follows a ramp function with the user specifying the number of
steps, and the initial and final values of the ramp. Sinusoidal, square and triangular input functions will be introduced in
future. ‘

Entering sample variables is similar to the step variables and up to 1000 may be selected. A special sample variable,
INPUT, allows manual data entry for each step.

Figure 2: Data Acquisition Interface for the Correlation Package

Actions

For each step and sample variable one may specify a list of pre and/or post actions. Additionally, Initial (pre experiment),
Intermediate and Final (post experiment) actions are also available from the Actions menu. Currently available actions
include “Time Delay” (simple time delay after stepping or sampling), “Time Delay Sync” (synchronized sampling) and
“Script” (executing a shell or a Tcl script at any point during the experiment).

609

Control

The data acquisition may be performed in auto or manual form. In manual acquisition the program acquires a sample only
after the user has so indicated. Users may also abort the acquisition in which case they will be prompted whether the data
should kept or discarded.

Once an experiment has been defined, the entire setup including the list of sample variables, step variables and actions
may be saved for future recall and execution. This allows for setting up and debugging complex experiments in advance of
actual use in the control room. Additionally, after an experiment, one may save the collected data for analysis and plotting
with the Matlab analysis package.

ANALYSIS

The analysis portion of the Correlation Package is written using the Matlab [3] modeling package and is called the Matlab
Analysis and Graphics Laboratory Environment (MAnGLE). Matlab was chosen as the basis of the analysis portion
because it contains a wealth of graphing and analysis functions and because most laboratories have Matlab licenses. MAn-
GLE presents the user with a graphical interface to the data collected by XACT allowing them to perform basic analysis
and graphics functions by pointing and clicking. Communication between MAnGLE and XACT is through disk files.
MARGLE reads the XACT setup file to obtain a list of stepped and sampled signals as well as information about the input
functions. XACT stores the data collected in a file specifically formatted for Matlab. In the current implementation, the
user must save the XACT setup and data file and then start up MAnGLE as a separate process and select the named data
files for analysis. In the future, XACT will spawn MAnGLE and users will be able to analyze and view the data as it is
being collected.

The MAnGLE user interface is divided into two sections. The first is a control panel which displays the device/attribute
pairs the user selected with XACT along with menus and associated popups which allows the user to select predefined
analysis functions and options. Graphics and analysis results are displayed in a separate window. The current implementa-
tion of MAnGLE provides 2-D graphics display of any correlation variable against any other. There are currently three
plot options. The entire data set may be displayed at once in a scrollable window. A second plot option allows selecting a
default X variable and then plotting any other variable as the Y variable. Y variables are selected by clicking on the
device/attribute name displayed in the control panel window. The graphics window can be cleared between plots or plots -
may remain in the window to display a family of curves. A third option is to select a default Y variable and cycle through
any number of X variables. Future plans include bar chart displays and 3-D graphics displays. Analysis functions such as
curve-fitting, histograms, minima and maxima determination and FFTs will be added later. Future implementations will
also allow users to write their own Matlab scripts (m-files) which can be added to MAnGLE.

IMPLEMENTATION

The correlation Plot Package has been developed utilizing Object oriented design and C++ implementation. The core of
the package which may be embedded as a data acquisition module in any high level application, consists of the correlation
specification, corrSpec, and the correlation engine. CorrSpec maintains all the information that defines an experiment; the
correlation engine makes use of this information to run through the experiment.

Correlation specification consists of five major parts: a set of initial actions, a set of step variables, a set of intermediate
actions, a set of measurement variables and set of final actions.

From an object point of view, a corrSpec object may hold lists of step objects, action objects and measurement objects (Fig-
ure 3). Each step or measurement object could optionally contain lists of pre-actions and/or post-actions as needed. The
corrSpec object also contains all the necessary methods to manipulate these lists of objects. '

A step object can vary any accelerator parameter with a given initial value, step size, final value, and a stepping function
(ramp, square, triangle, sine). Step specifications may also be time or an index. In the case of an index, the engine collects
all sample variables sequentially without stepping any device in between the samples. An action object can be any general
action, such as a time delay (synchronous or asynchronous), adjusting any control system parameter, conditional action by
comparing some parameter values, waiting for some events to take place, or executing a script. A measurement object is
just a container which holds the measured data.

All classes including step, action and measurement, are organized in a hierarchical structure so that a simple interface can
be presented. A major benefit of this organization is the ability to augment the action class without the need to modify the
access interface.

610

The comelation engine’s interface to the accelerator environment is solely through the CDEV device layer and is thus in-
dependent of the underlying control system. This allows any correlation application to have uniform access to any machine
data regardless of its source, such as online data from low level microprocessors, static data from a central database, mod-
eling information, etc. Similarly, once a new device (or device type) has been added to a service under CDEV, such as
EPICS [4], it becomes automatically available to correlation applications for measurement and/or control.

The correlation engine is also capable of periodically calling user callback functions to allow applications to perform other
tasks such as temporarily suspending data acquisition or aborting the experiment.

| corrSpec I

°
| &7 corr§tep I | & corrAction | | corrMeasurement |
_-—-—-J T
<a{ corrStepRamp | | corrActionDelay | [measData |
| corrStepSine | < corrActionScript |

<¢{ corrStepSquare | [« corrActionCdev |

<{ corrStepTriang | (<&{corrActionCdevWait]

4 corrStepindex | e{corrActionCdevTest |

Figure 3: Correlation Plot Package Object Classes Scheme

FUTURE PLANS

The correlation package which is currently undergoing beta testing contains the basic features that are necessary for
online data acquisition and control. In order to provide a comprehensive environment for performing online accelerator

physics studies, the following developments are planned:

» Uniform access to all control system data including correlation, archived history, and high speed buffered data;

« Complete online data analysis capability including curve fitting, signal processing, and statistical analysis;

Availability of graphics and analysis directly from XACT, and transparent data transfer from XACT to MAnGLE;

Availability of a variety of input functions such as triangular, square, and sinusoidal;

« Implementation of correlation engine as a service under CDEV. This would allow its use as an embedded engine
by high level applications such as emittance calculation and lattice diagnostics.

« Implementation of a scripting language to automate all phases of an experiment including data analysis.

REFERENCES

[1]1J. Chen, G. Heyes, W. Akers, D. Wu, W. A, Watson IIl, CDEV: An Object-Oriented Class Library for Developing De-
vice Control applications, International Conference on Accelerators and Large Experimental Physics Control Systems, Oc-

tober 1995.

[2] L. Hendrickson, N. Phinney, L. Sanchez-Chopitea, Correlation Plot Facility in the SLC Control System, Proceedings
of Particle Accelerator Conference, May, 1991.

[3] Matlab reference Manual, Copyright The MathWorks, Inc., 1984-1993

[4] Leo R. Dalesio, et. al. The Experimental Physics and Industrial Control System Architecture: Past, Present, and Future,
International Conference on Accelerators and Large Experimental Physics Control Systems, October 1993.

611

Database Requirements for the Vacuum Systems of LHC

M. Steffensen and P. M. Strubin
CERN, Geneva, Switzerland

Abstract

The new Large Hadron Collider (LHC) which will be built over the next decade at CERN requires two
independent vacuum systems. One will be a high vacuum for the two 26 km long beam pipes and the other is needed
for the insulation vacuum in the cryostat and helium distribution system for the superconducting magnets. Several
thousands of components will be acquired, assembled and installed in the ring tunnel. All active components will
eventually be remotely controlled. Several phases can be identified during the project lifetime, starting from the
preliminary design and ending with exploitation. Each phase requires different sets of data to be available. This
paper identifies the required data, when this data should be available, the needs for integration with other equipment or
project databases and the tools which are felt necessary to manage the data.

1 INTRODUCTION

A considerable amount of information has to be provided, stored and exchanged during the various phases of a
large project, like the LHC accelerator. Powerful database management systems are now available and ease the
organisation and storing of this data. But retrieval or manipulation tools are as important as the database engine
itself.

The required information varies during the project lifetime, as does the necessity to share this information. This
paper tries to identify the information required to design, produce, install and eventually commission the vacuum
system of LHC. It will also focus on those areas where information may not be available in the most suitable way.

2 CONCEPTUAL DESIGN PHASE

The functionality of the equipment must be defined properly during the conceptual design phase, but the
components of the various systems, including the vacuum system, are only loosely defined. The aim at this stage is
to provide a feasibility study, along with cost and resource estimates. This activity is carried out based on experience
with previous accelerators, prototypes, manufacturers' catalogues, etc. In the case of the vacuum system, layout
sketches are the primary input for the topology. From these, the vacuum specialists evaluate requirements for
pumps, valves and measuring equipment. Adding them all together will provide a cost estimation.

During this phase, it is important to have access to the design and manufacturing data of previous accelerators
(e.g. LEP), as well as to up-to-date supplier documentation. At CERN, design and manufacturing data from previous
accelerators exists mainly in the form of paper reports and drawings, the latter often being stored in EUCLID or
AUTOCAD format. Some manufacturing data for vacuum chambers exists in the form of ORACLE tables. On the
other hand, manufacturers' catalogues are beginning to be published on electronic media, such as CD-ROM disks,
which can be accessed from desktop computers.

At this stage, sharing of data is mostly done during formal and informal meetings. Minutes of these meetings
can (and start to be) published by electronic means, like the World Wide Web. There is little need for a central
database and in most cases a good spreadsheet program is an adequate tool to rapidly evaluate the cost of various
solutions.

However, at the end of the conceptual design phase the cost and resource estimates should be stored in a central’
database, as they are key components for the planning and the follow-up of the budget and expenditure.

3 DETAILED DESIGN PHASE

The requirement for storing and sharing data considerably increases during the detailed design phase. The primary
input data is the layout of the accelerator, which is derived from the conceptual design and gets more and more
refined. The level of detail required is however varying strongly, depending upon the usage. For instance, the
vacuum specialist responsible for distributing the pumping equipment needs to know about possible interferences
with other equipment, whereas the controls team only needs to know the location of the equipment for cabling.

The layout data must allow for version handling, as it must be possible to work on several different
implementations simultaneously. A good example of the implementation of such a database is given in {1]. It has
been widely used by the Vacuum Group for the LEP accelerator. However, there is a strong need for better tools to

access and manipulate the data.

612

Layouts are best represented on drawings rather than lists of equipment. The main reason for this is that these
drawings are presented to various decision committees, where discussions in front of a computer screen are not easily
possible. Another, almost trivial, reason is that the human eye often points to possible interferences much quicker
than sophisticated analysis programs. Modifications of layouts should be possible using tools which resemble object
drawing programs rather than the present method of ORACLE Forms used by Vacuum Group.

The objects themselves are drawn by the design offices using CAD tools (mainly EUCLID and AUTOCAD at
CERN) and should be stored with various levels of details in a central database. The relations between the objects
also have to be stored in a database. Work is going on in this field in the Vacuum Group and elsewhere at CERN
[2), aiming at a generalised approach for defining and grouping objects.

It should be possible to access and manipulate these objects on a screen using essentially a "point and click"
approach. For instance, the vacuum specialist in charge of placing the pumping elements would display a section of
the layout of LHC and add or displace the pumps, the model of which would have been drawn by the design offices or
extracted from manufacturer's documentation, when available. Again by analogy with common drawing programs,
the layout should be drawn in layers corresponding to the various equipment groups.

Not all data has to be entered manually into a database. A large accelerator like LHC has a highly repetitive
lattice for more than three quarters of its circumference. Hence automatic programs can be used to enter data like
pump locations and the associated cabling. This approach was successfully used for LEP, where the initial cabling
and routing had been produced automatically from the available description of the vacuum system in an ORACLE
database. Similarly, pumps, gauges and roughing valves have been automatically placed using a FORTRAN
program, the input of which was again the description of the vacuum system extracted from the database.

A large amount of experimental data will be produced during the detailed design phase. Several experiments are
run to evaluate the effect of synchrotron light and the way to cope with it in a superconducting environment [3].
This data should be stored, but do not necessarily have to be in central database, as it is highly specialised.

As the volume of data increases considerably during the detailed design phase, it becomes necessary to introduce
- global data management tools, often referred to as Engineering Data Management Systems (EDMS). Commercial
products start to be available and used in industry. An EDMS Task Force has been set up at CERN to try to use
such a product for the design of LHC experiments [4].

4 MANUFACTURING OF COMPONENTS OF THE VACUUM SYSTEM

The Vacuum Group's involvement during the manufacturing process is mainly related to the tendering process,
the follow up of the fabrication and the acceptance tests. At this stage all possible critical paths should be identified.
Planning data must therefore be easily available and updatable. A solution to this problem is proposed in [5].

During the tendering process, detailed drawings must be made available from the design offices. In general, these
drawings are produced using CAD tools but they still are output on paper, although more and more industries use
CAD programs with an interchangeable output format, like AUTOCAD. An up-to-date supplier database is also a
key ingredient for successful tendering, in particular to minimise the need for time consuming Market Surveys.

During the follow up of the manufacturing, critical data, such as tolerances, must be obtained from the
manufacturers and stored in a database at CERN. During the construction of LEP, manufacturing data of the lead
cladding process were downloaded from the supplier in Germany over telephone lines and stored in ORACLE tables.
It is also at this stage that inventory data, like serial numbers, start to appear. Finally, the results of the acceptance
tests must also be stored. The approach proposed in [2] seems adequate to relate the data properly with the different
objects being manufactured. However, here again, a considerable effort to ease data input and retrieval has still to be
done. In particular, it should be avoided as much as possible that data produced at the manufacturer's place has to be
printed and later typed into a database.

5 INSTALLATION AND COMMISSIONING

During the installation phase, the primary data required is layout, planning and stock keeping. During this
phase, there is little input from the Vacuum Group, except for delivery time of components and feedback from
installation teams. But there is a considerable need for planning and logistics information.

The location of every component, identified by some serial number, should be recorded during installation. This
data can be of great use when defects appear which could be linked to a particular series or production time of some
components, requiring systematic repairs or modification. An attempt to store the location of vacuum equipment
was started in LEP, where bar code labels were glued on the vacuum chambers prior to installation. A programmable
bar code reader was used to scan parts of the accelerator after installation and this data was then loaded over RS-232
lines into the database computer. Unfortunately, the scan was never finished and the data has not been used. There
was no technical problem, however.

The quantity of data to store increases again when the time comes for commissioning. At this stage, the main
control system for LHC should be available. Hence, this data could be automatically fed into the database using data

613

logging and archiving programs. This data is crucial for the future maintenance activities of the accelerator. Because
of the tight time schedule of the installation work, some minor defects may have to be left for a later repair. The
commissioning data would allow for a map to be produced of the temporary repairs which have to be fixed at the first
possible occasion.

6 CONTROLS AND OPERATION

The specific database requirements for controls are multiple and start during the detailed design phase. Initially,
the cabling of all remotely controllable equipment must be defined, relying on the layout data and properties of the
equipment. As already mentioned, a large part of this activity can be done using automatic programs. In the
exploitation phase, however, when only incremental modifications are done to the accelerator, a graphical approach is
preferred.

An important effort has been made to provide operational models for the vacuum equipment [6]. These models
are best described using object oriented notations. Thus, an object oriented database is likely to be the most efficient
repository for the description of the properties and bebaviour of the vacuum equipment. Work is presently going on
in the Vacuum Group to assess to what extent a conventional relational approach could be used until commercial
object oriented databases really exist. The messages and the required parameters used to drive the equipment must
also be stored in the database. This has been done for LEP and allows for a coherent behaviour of the equipment, as
well as for automatic decoding of the messages [7].

Finally, as soon as part of the accelerator come into operation, the pressures should be logged. Unlike all
previous databases, this requires an on-line database, with update or insert times compatible with the physical data
acquisition. Extracting data can be done off-line, however. Data reduction and archiving algorithms should be made
available as soon as some data is available from the vacuum system via the main control system. A typical logging
system should gather data at a relatively high rate (e.g. one reading every few minute). This data must remain
accessible for a period of time of the order of one or two weeks, after which only a subset should be stored and kept

for the lifetime of the accelerator.

7 CONCLUSIONS

The presently used Data Base Management System, ORACLE, is adequate for the storage of the huge amount of
information required for the design, construction and commissioning of the LHC accelerator. Most effort will have
to be put in the data manipulation tools, in particular to allow for a more graphical approach. A significant effort
will also have to be put into the Configuration Management and into the global management of all this data, using
the emerging commercial Engineering Data Management Systems.

REFERENCES

[1] CERN's Accelerator Description Using Databases, A. Albrecht et.al., proceedings of the 9th International
European ORACLE User Group Conference Cannes, 1992, CERN SL/92-19 (OP)

[2] 7. Schinzel, private communication, CERN-1994

[3] R.Calder at al., Synchrotron Radiation Induced Gas Desorption from a Prototype LHC Beam Screen at
Cryogenic Temperature, CERN AT/95-42 (VA), LHC Project Note 7

[4 C. Hauviller, chairman of EDMS Task Force, private communication, CERN-1995

[5] A Planning and Scheduling System for the LHC project, G. Bachy et al., LHC Note 355

[6] Operational Protocols for Vacuum Systems, G. Baribaud at al., CERN AT-VA (91-06)

[71 Automatic decoding for the control messages for the LEP Vacuum System, P.M. Strubin, proceedings of the
8th International European ORACLE User Group Conference, Madrid, 1990, CERN AT-VA (90-93)

614

Personnel Safety System Status Reporting via EPICS at the
Advanced Photon Source’

S. J. Stein
Experimental Facilities Division, Argonne National Laboratory
9700 S. Cass Ave. Argonne, IL, 60439 USA

ABSTRACT

The Personnel Safety System (PSS) for an experimental beamline at the Advanced Photon Source
(APS) uses a dual-chain, PLC-based architecture for controlling shutters and experimental stations.
Reporting the status of these two chains is important from both an operational and diagnostic standpoint.
This paper discusses the methods used for passing information from both chains of the PSS to the EPICS-

based control system at the APS.

I. INTRODUCTION

The design of the Personnel Safety System for the experimental beamlines at the Advanced Photon
Source (APS) specifies the use of Programmable Logic Controllers (PL.Cs) for both interlock and control
functions. To meet certain DOE requirements, the PSS was designed using two chains in an effort to avoid
common-mode failures [1]. The first chain (denoted “Chain A”) uses the Allen-Bradley PLC-5 series
processor with both local and distributed I/0. The second chain (“Chain B”) uses the GE/Fanuc 90-70
processor, also with both local and distributed I/O. Each beamline has its own autonomous PSS with no
knowledge of, or communication with, any other beamline [2].

The (physical) size of the APS makes it necessary to be able to monitor the status of any given
beamline from a remote location (such as the control room). To accomplish this without compromising the
individuality of each PSS, special hardware and software has been added to both chains. These additions
allow each chain to report a variety of information (including /O points, status information, faults, etc.) to
various EPICS database records. Once it is available as a collection of EPICS database records, any
authorized X-Terminal or workstation has the ability to display the status of each beamline PSS. This
information can be used for a variety of things including validation, debugging, fault tracing, and user

training.
II. CONCEPTUAL DESIGN

The overall design requirements specified that the individual chain is responsible for sending the
appropriate data to the EPICS database. It is also a requirement that the EPICS interface is not an integral
function of the PSS operation (i.e., if the IOC goes down, the PSS must still function). Finally, it is also
necessary that the communication be a read—only operation (the database must not have the ability to write
into the PLC data space). Each chain has special hardware and software to meet these criteria.

Oi. CHAIN A - ALLEN-BRADLEY PLC-5

Allen-Bradley produces a VME “scanner” card that can be used to communicate with an Allen-
Bradley back plane. This scanner typically connects via shielded twisted pair wire to an Allen-Bradley
“Remote 1/0 Adapter,” which sits in an Allen-Bradley crate. It is then possible to perform most of the
functions of an Allen-Bradley PLC-5 processor — including reads and writes. Note that the “intelligence” of
this system comes solely from the VME scanner — the Remote /O Adapter is a non-intelligent device. At
this point, it would seem that the simplest method of transferring data to EPICS from the PLCs would be
to use this VME Scanner to Remote /O Adapter communication. Two overriding concerns prevent this;
firstly, the interlock system must be stand-alone and not dependent on the VME scanner, and secondly, any
type of write operation (from the VME to the PLC) must not be allowed as it may compromise the
integrity of the interlock program. A data transfer method that only reads from the Interlock System is

" Supported by the U.S. Department of Energy, BES-Materials Sciences, under contract W-31-109-ENG-38

615

required: a one-way communication that “filters” the data the VME side can access. To facilitate such a
communication requires the use of an Allen-Bradley “Direct Communications Module” (DCM). This
module was designed to allow a remote PLC processor to access the local processors data space (both read
and write) through shielded, twisted pair cable (“blue hose”). The DCM occupies a slot in the same chassis
as the local processor. Communication between the local processor and the DCM is done directly through
the backplane. The local processor decides what data it wants the DCM to read and/or write. It is this ability
that allows us to achieve the desired communication protocol [3].

It was decided to pass all of the input and output bits into EPICS, along with certain PLC status
information, and a fault stack containing a time-ordered list of faults. To accomplish this, a small amount
of code was added to the PSS logic that collects all of this data into two groups and sends them to the DCM
via the Block Transfer construct. The DCM is configured to buffer the blocks (a block can be up to 64
words - 16 bits each) coming in over the (Allen-Bradley) backplane and send them over the blue hose when
the VME scanner requests them. A new EPICS record type, denoted the “abDcm,” is used to specify such
parameters as the scanner address (in “Link, Rack, Slot” notation), number of word groups to read, and scan
frequency. For each binary value (mostly input and output bits) a “bi” record is created for use in EPICS
applications such as MEDM and the Alarm Handler. In an attempt to reduce network traffic, all binary input
records are interrupt scanned [4].

e e e e ety } Sect or 1-BM PSS Rack
] AB :
)
1 ' -
| = | [Chain A
' = i
t
5 :
H 1
] 1
s GE| !
| .
' g ' [Chain B
1 é ! Sector 2 Vacuum Reck
' : e i '
[1
! | E ! == To 1-ID
E E = i 1 [= 0= To 2-BM
' T1 - [T
b . i o ' seria-12 | 1 Treev
Blue Hose ' '
———————————————————————— t
Muk conduct or rbbon :
)
! To 1-ID
[1 —— To 2-BM
oat in
VME } fi:pa_p'e up
)

mvi6?
mv162
3v6008
$v6008
sv6008
3v6008
$v6008
sv6008

FIGURE 1 - SCHEMATIC LAYOUT OF I0C AT SECTOR 2
Each IOC supports six beamlines (see figure 1). In order to maintain isolation between beamlines,
six VME scanners are used (each with a different link number). The scan time for each DCM is fixed at one
second, making the best-case resolution for updates about once per second (chain A).

IV. CHAIN B - GE/FANUC

General Electric makes a line of 90-70 coprocessors that sit on the GE backplane and are capable of
running programs independently of the main processor. All main processor memory is available for
inspection by the coprocessor, including I/O and status. We choose a coprocessor with configurable serial
ports that can be programmed in a extended BASIC language, which GE named “MegaBasic”. MegaBasic
was chosen due to its large flexibility in controlling character output format to the serial ports, along with

the relative ease of programming.

616

A small MegaBasic program was written that continuously scans the input, output, and status bits
of the main processor, forms them into a string of hexadecimal characters, and prints them out of the serial
port. A single frame consists of a start flag (the ASCII character “s”), the byte representation of the main
processor memory, an end flag (letter “t”), and a checksum. Frames are sent continuously with no regard to
acknowledgments. The serial port of the coprocessor is connected to a fiber-optic modem to allow long
cable runs without (electical) noise problems. The other end of the fiber pair is connected to another fiber
modem (one of many concentrated in a “serial 12” chassis - see figure 1), which in turn is connected to the
VME module (described below).

On the VME side, a MVME162 module running the Hideos operating system is configured with
two quad serial IP (Industry Pack) modules. Each of the IP modules is capable of communicating with four
serial (RS-232) devices. The serial port of the GE co-processor is connected to one of the eight available
serial ports on the MVME162 via fiber. A Hideos task was written to read the status frames arriving from
the coprocessor and check for successful transmission (via the framing bits and the checksum). If a valid
transmission is not received in five seconds of the last received frame, the connection is assumed dead and
the record support specifies an invalid alarm.

Assuming a successful transmission, the Hideos task then looks at groups of two bytes (a “bit-
group”) and checks to see if any bit has changed within a group. If so, the associjated records within the bit-
group are signaled to the process and the values are updated appropriately [5]. As in the Allen-Bradley
implementation, a separate binary input record is created to map each individual /O point of the Chain B
PSS.

Monitoring chain B takes only one MVME162 card since the IP modules allow us to connect to
six individual GE coprocessors. The communication between the GE coprocessor and the MVME162 takes
place at 19.2 Kbps. Assuming a low noise connection (which is valid since we are using fiber as the
transmission medium), we will experience very few corrupted frames and can easily match the one second

resolution of Chain A.
V. OPERATOR INTERFACE

MEDM was used to build a variety of screens (see figure 2). In general it was desired to be able to
monitor all input and output points for both chains simultaneously. A special database was created to
compare related outputs between chains and is used to flag abnormal conditions (for example, if an input
does not appear on both chains when it is normally supposed to). Other screens include a fault stack
(showing the last 10 faults), a PLC status page (showing a variety of PLC-specific information) and
navigation (via menus).

Other screens show a schematic overview of the beamline and experimental stations. These screens
are more useful to the experimenters to indicate status of shutters, doors, etc. (figure 3).

617

618

Figure 3 - MEDM Screen depicting a schematic view of an experimental station

VI. CONCLUSIONS AND POSSIBLE IMPROVEMENTS

Currently the system is implemented for one beamline (3-ID) and is working very well. All of the
diagnostic screens have been used for beamline hardware checkout and as an aid to software verification. The
ability to monitor the entire /O map of both chains simultaneously has been a tremendous benefit to
diagnosing wiring problems and limit-switch misalignments.

A number of improvements and/or additions can be added to the system however. The interrupt
driven nature of both chains is worthwhile in theory, but may not do so well in practice. There are a few
signals that are periodically changing on the IO maps which need not generate interrupts (particularly the
“watchdog” signal — a pulse train traded between both chains to indicate “I’'m alive” status [2]). Making
special consideration for these periodically changing signals may cut down on network traffic and processor
load.

At this point in time, Chain B does not pass any status information (i.e., scan times, battery
condition, etc.). Although it was deemed not necessary due to the simple interlocking function of that chain
[2], it will be added later to assist in debug and fault tracing.

Finally, the Alarm Handler and the Archiver have not been implemented up to this point. It would
be worthwhile to log certain I/O and status points in order to reconstruct any run time faults that may occur

during beamline operation.
VII. ACKNOWLEDGMENTS

I would like to thank Jim Kowalkowski for the tremendous work done on Hideos in general and
the Fanuc support in particular. I would also like to thank Chris Seaver for assistance in all questions
regarding the Allen-Bradley PLC systems.

VIII. REFERENCES.

1. DOE Order 5480.25, “Safety of Accelerator Systems,” (DOE 1992b).

2. Hawkins, J., et al., “Personnel Safety System for the Beamlines at the Advanced Photon Source,” SRI
Conference proceedings, 1995.

3. Stein, J. “One-Way Data Transfer for PLC to VME Status Reporting at the Advanced Photon Source,”
Nuclear Instruments & Methods in Physics Research - A 253 (1994) 210-212.

4, Stein, J., Nawrocki, G. and Kramer, M. “Data Exchange from Allen-Bradiey PLC Based Systems to
EPICS,” ICALEPCS Proceedings, 1995.

5. Kowalkowski, J. “A Cost Effective Way to Operate Instrumentation Using the Motorola MVME162
Industry Pack Bus and HIDEOS,” ICALEPCS Proceedings, 1995.

619

Data Exchange from Allen-Bradley PLC-Based Systems to
EPICS at the Advanced Photon Source’

S. J. Stein, C.L. Seaver
Experimental Facilities Division

G. J. Nawrocki, M.R. Kraimer

Accelerator Systems Division

Argonne National Laboratory
9700 S. Cass Ave. Argonne, IL, 60439 USA

ABSTRACT

The Advanced Photon Source (APS) uses Allen-Bradley Programmable Logic Controllers (PLCs)
in a number of applications including equipment protection and personnel safety systems. It is necessary to
report the operating status of these systems to the main control system, designed using the EPICS tool kit.
This paper discusses the method used at the APS to transfer data from a PLC-based subsystem to the
EPICS-based control system.

1. INTRODUCTION

Traditionally an EPICS database communicates with the outside world via a number of interfaces -
one being the Allen-Bradley Remote /O link. This link consists of an Allen—Bradley VME scanner card
(SV-6008) that resides in a slot in the Input-Output Controller I0C) and is connected via “Blue Hose”
(twinax cable) to a “Remote I/O Adapter”. The Remote I/O Adapter resides in slot zero of the Allen—Bradley
1771 backplane and functions as a bus arbiter but contains no user code. All of the intelligence is contained
within the IOC (usually a MVME167 processor running an EPICS database). With proper configuration, an
EPICS database can access a variety of Allen-Bradley 1771 I/O cards including binary, analog and a few
special cards (thermocouple, strain gauge, etc.). This method was used for many years as it was a cost-
effective way of adding many remote I/O points to an IOC with little effort.

Within the last few years, however, it was determined that another method of acquiring data from
an Allen-Bradley system was needed — a passive method that would grant an EPICS database the ability to
view the status and /O map of an autonomous PLC-based system. This was born from the need to monitor
the status of two large safety systems at the Advanced Photon Source (APS) which use PLC processors
running ladder logic (a graphical-based control language). Since the PLC processor resides in slot zero of
the Allen-Bradley backplane, the remote I/O adapter is not an option. This paper discusses the hardware and
software used to communicate information from a PLC controV/interlock system into EPICS.

II. OVERVIEW

As mentioned in the introduction, the standard connection from an IOC to a Remote /O adapter is
not valid. Instead, the use of the Allen-Bradley Direct Communication Module (DCM) is appropriate. The
DCM is meant to be used as a method of data transfer from one PLC system to another. The DCM resides
in any open slot in the Allen—Bradley crate, and the main processor controls reading and writing to it via the
backplane. Typically, the DCM is connected to another processor (in a different system) using blue hose.
The remote processor believes it is talking to a remote I/O adapter - the communication over the blue hose
takes place using the same protocol as the Remote I/O link.

If we replace the remote processor with the VME scanner, we now have the ability to read the
status of a PLC system via an EPICS database. Previously it was necessary to “fool” the EPICS device
support into reading from the DCM as no specific code was written to talk to the DCM [1]. With the latest

* Supported by the U.S. Department of Energy, BES-Materials Sciences, under contract W-31-109-ENG-38

620

revision of EPICS however, a specific hybrid record type was included for configuring and communicating
with the DCM.

ITI. EPICS PROGRAMMING

As stated above, the latest versions of EPICS support communication with the DCM via some
special record types and device support. A new record type (“abDcm™) was created that is used to specify
such items as the Link, Rack and Slot address of the DCM, the scan rate and the number of messages that
are to be sent from the DCM (1 message = 64 short words) (see figure 1). The Allen-Bradley driver (drvAb)
was modified slightly to allow for arbitrary block transfer requests (instead of tying the block transfer to
specific IO modules). Processing of the abDcm record causes a read from the DCM - if a word from any of
the messages has changed, a Channel Access monitor is triggered. Typically records are created as INST_IO
pointing to the abDcm record and specifying the message number, word number, and bit number (if needed).
An example bi (binary input) record is given below (figure 2):

record(abDcm, “TestDCM:SJS™)

{
field(SCAN, “1 second”)
field(UTO, “YES™)
field(UT1, “YES™)
field(LINK, “x™)
fieldRACK, "y”)
field(SLOT, “z”)

- o The first field specifies that this record be scanned periodically - once per
second. Note that the scan rate can be increased or decreased depending on the
resolution desired versus the processor load that can be tolerated.

e The second and third fields specify that the DCM will be sending two
messages (there are actually six of these fields UTO through UTS - if the UT
field is not specified, it is assumed to be “NO™).

o The last three fields specify the address of the DCM in Allen-Bradley “Link,
Rack and Slot” notation.

Figure 1 - Example of abDcm record

record(bi, “TestBi:SJS”)

field(SCAN, “I/O Intr”)
field(DTYP, “Ab Dcm™)
field(INP , “@TestDCM:SJS.Tx[y,z]”)

e The first field specifies that this binary input record be I/O Interrupt scanned -
this record will only process if the word (specified in the INP field) changes.

o The second field specifies that the device type is the AB DCM.

o The last field points to the record name of the DCM record and specifies the
message number (the “x”), the word number (the “y™) and the bit number
(“2”). Note that specifying the bit position within the word is valid only for a
binary input record, other record types (namely mbbi and longin) would only
specify down to the word number.

Figure 2 - Example of binary input record

621

The abDcm device support expects to receive at least two messages per data transfer. Each message
may consist of up to 64 short words (16 bits), however the first eight words are reserved as described below
(see figure 3). The first word is used by the DCM to send status information including buffer state, last
transmission success, etc. The second and third words are reserved for future use and the fourth word (word
3) contains an integer value corresponding to the message number (this is the number specified in the Tx
parameter in the Param field of the database record). The last four words are also reserved for future
expansion. Note that this configuration makes the ninth word the first one available for user data.

Word 0
(DCM Status Word 0)

Words 1 and 2
- ..(Fumre Use).. e e

Word 3
(Message Number 0-5))

Figure 3 - Message structure from DCM to EPICS
IV. ALLEN-BRADLEY PROGRAMMING

The Allen—Bradley PLC system must be modified slightly to add the monitoring capability.
Firstly, the messages are constructed in a certain sequence that is known to both the EPICS and PLC
programmer. The messages are then transferred to the DCM via the Block Transfer statement within the
ladder logic program. Each message is identified by a unique descriptor (an integer value) which is placed in
the fourth word. Each different message is sent in sequence, one at a time. After a message is received in the
DCM, block transfers into the DCM are blocked until the message is transmitted over the blue hose. This
process is continuous.

V. SYSTEMS IN USE

A variety of subsystems of the APS use the Allen-Bradley series 5 processors for control and
interlock functions. In general it is important to be able to monitor the status of these systems from many
locations including the Main Control Room (MCR). Below is a short description of three currently
implemented monitoring packages at the APS.

V.1 ACIS

"The purpose of the Access Control Interlock System (ACIS) is to guarantee that no one
is in the APS accelerator tunnels while the accelerator is in operation. Since the APS is
composed of several accelerators, there are actually four separate ACIS systems. This allows
portions of the APS to be in operation while people have access to other parts. Each ACIS
system consists of two redundant Allen-Bradley PLC-5 systems.

622

EPICS currently is used to display the status of two of the ACIS systems with plans to
include the other two systems. For the two systems currently monitored, the EPICS database
consists of approximately 1700 records, most of which are binary input records.

In building the EPICS database and the MEDM (an EPICS GUI) displays, extensive use
was made of the macro expansion capabilities of dbLoadTemplates and MEDM. The 1700
records are generated from just a couple hundred record templates. Over 100 MEDM displays
are available but are generated from just a few medm template displays.

Although the EPICS database has > 1700 records, the CPU utilization is less than 5%.
This is because the DCM support provides the ability to process records only when the word
containing the records signal changes.

V.2 PSS

The Personnel Safety System (PSS) for the beamlines at the APS is used to
provide access interlock and control along an experimental beamline. Each system consists of
two independent chains — one of which is based on the Allen—Bradley series 5 processor.

Currently the PSS for the Sector 3 Insertion-Device beamline has a completely
functional PSS monitoring package installed. It has been used for a variety of tasks including
initial software and hardware debugging, software and bardware verification, on-line
diagnostics and fault tracing, At present, the Allen-Bradley chain of the PSS sends two
messages at each transfer. Each message consists of a variety of values including the entire
input and output image tables, PLC status information (including the current time and date of
the PLC clock) and a time—ordered stack showing the first ten PSS faults [1].

A database was constructed that consists almost entirely of binary input records (see figure
1) corresponding to the input and output table of the PLC. Macro substitution was used (via
the dbLoadTemplates command) due to the extremely consistent nature of the I/O map. In
general each bi record is named in a method that correlates easily to the Allen~Bradley
addressing scheme.

Another database was constructed that is used to store “static” records that do not fit into
the macro substitution mold. These include a few longin records used to pass time and date,
ten records that correspond to a fault stack, and a variety of “analog” PLC status values (scan
time, battery status, etc.)

Finally a third database is used solely to service the DCM. It contains one abDcm record
(see figure 2) that is periodically scanned once per second [2].

V.3 METASYS

Metasys is a distributed system of intelligent I/O processors used for control and
monitoring of environmental and HVAC parameters at the APS. The Metasys Network port
is a device that allows monitoring and controlling of the Metasys Facilities Management
System from a third party computer system. The Metasys Network Port emulates the
communication of a PLC-5 and communicates with other PLC-5 processors via R§232
using the Allen-Bradley Full-Duplex Data Link Layer Protocol (DF/1). An Allen~Bradley
1771 KF2 converts the Network Port RS232 signal to a Data Highway Peer
Communication Interface to complete the Network Port to PLC-5 link. This dedicated PLC-5
module is then programmed to act as bridge between the Metasys Network port and EPICS
utilizing the DCM device and record support.

Currently, at the APS, a small set of binary and analog Metasys values are passed to
EPICS as a proof of concept. This number will increase as more environmental data is
incorporated into EPICS displays, alarm handling applications, and data acquisition
techniques familiar to the operators and accelerator physicists [3].

VI. CONCLUSION

The additions and modifications to allow communication via the DCM have proven to be
invaluable for monitoring PLC-based systems at the APS. The ability to view the /O and status of these
systems has made debugging, diagnostics and fault tracing much easier than previous methods.

623

Currently there are three systems in place at the APS which use the DCM as a bridge into EPICS.
The Accelerator Control Interlock System (ACIS) uses a very large number of records to convey the status
of a large system to operators throughout the ring. The Personnel Safety System (PSS) also consists of a
large number of records used to report status to operators and, in the near future, APS users. Finally, the
Metasys system also reports (indirectly) through a DCM to the main control system a variety of
environmental system parameters.

VII. REFERENCES

1. Stein, J. “One-Way Data Transfer for PLC to VME Status Reporting at the Advanced Photon Source,”
Nuclear Instruments & Methods in Physics Research - A 253 (1994) 210-212,

2. Stein, J. “Personnel Safety System Status Reporting via EPICS at the Advanced Photon Source,”
ICALEPCS Proceedings, 1995.

3. Nawrocki, G. Seaver, C. and Kowalkowski, J., “Monitoring Commercial Conventional Facilities
Control with the APS Control System — The Metasys to EPICS Interface,” ICALEPCS Proceedings,

1995.

624

Magnet Power Supply Controls of the SPring-8 Storage Ring

H. Takebe, T. Fukui, K. Kumagai, T. Masuda, J. Ohnishi, A. Taketani, R. Tanaka,
T. Wada, W. Xu and A. Yamashita.

SPring-8, Kamigori, Ako-gun, Hyogo, 678-12, JAPAN

Abstract

SPring-8 Storage Ring (SR) magnet power supplies (PS) were installed in the PS-rooms in March and October of
1995. High output current cables for the large DC PSs were put on the trays above the machine tunnel. A large
number of small size power supplies are now under construction. A fiber distributed remote I/O (RIO) slave card was
installed into the PS unit and connected to the RIO master card in VME. A test program for the power supply system
using an RIO device-driver was developed on an HP-RT workstation [1]. Magnet PS control programs are now in being

written.

1. Introduction

The SPring-8 storage ring consists of 48 Chasman-Green type cells. Each cell has two Bending magnets (B), ten
Quadrupole magnets (Q), seven Sextupole magnets (S) and twelve Steering magnets (St). Forty auxiliary PSs (QA) for
the long straight section cells are adapted for the Quadrupole magnets [2]. This number will come to 480 in the
future [3]. Thirty-eight sets of Skew Q and eight injection magnets are to be installed. The total number of Steering
magnet PSs (St-PS) is 576. Thus the total number of the SR magnet power supplies is 1120. The 480 QA supplies
must electrically float several hundred volts above ground level. Due to considerations of isolation, noise rejection and
reliability, an optical fiber linked Remote /O system was chosen. A large number of beam position monitoring circuits
plus vacuum control also use this RIO system, which consists of the following devices: 1) VME master with a dual
port memory, 2) RIO (slave card), of which there are seven different types, 3) star branch for optical fiber cables from
the master module to the slave cards [4][5].

2. Magnet Power Supplies

The total numbers of large PSs for B, Q and Sx is 18. They were installed in PS Room-A in March 1995, and all
St-PSs on 6 October 1995. They are thyrister controlled (B: 24th Q: 12th, S: 6th phase) DC supplies [6].

The steering magnets have independent power supplies (St-PS). One hundred ninety-two sets of St-PS and 10 sets of
QA are located in four PS rooms. Q magnets, which are connected in series, are adjusted by QA to correct the
modulation of the beta function and phase advance [2][7]. St-PS and QA are switching regulator type. Forty sets of QAs
and 576 sets of St-PS were also completed and installed.

A Four Bump, one DC-septum and one Pulse-septum magnet PSs (SR injection devices) are designed and under
construction. The Bump and Pulse-septum PSs use RIO type-A control circuits (see figure 1). These also use a timing
system connected to the 508.58 MHz master oscillator. The DC-septum PS takes RIO type-B.

3. PS Control System

Each reference voltage for the large (B, Q, S) PSs is given by a 16 bit DAC controlled by the digital output of an
RIO type-B. These DAC:s for the B, Q, and S PSs are installed in a temperature controlled box of the PS cubicle. This
RIO card has 32 bit DI and DO. Figure 1 shows the BP, QP and SP in PS Room-A.

The St-PS, QA and QB are controlled by the analog output (-10 ~+10 V) of an RIO type-A. The RIO type-A is
attached to that PS chassis with the same guard level. The RIO operational power source (5V, +15V) is supplied by the
floated PSs. The RIO type-A also has a double integration ADC, which monitors an actual current using a shunt
resistor output (-1 ~ +1V). These PS units have 8 bits of status (power on/off, DC-bus on/off, remote/local, fault,
over-current, temperature, ext-interlocks, etc.) to be read.

The currents of the multiple PSs must be changed simultaneously for an orbit correction. Therefore the orbit
correction program requires any combination of four or more St-PSs in any PS rooms. Also a slow (rough) timing
system (~ 50 ms) is needed. The computer network is used for such rough timing.

4. VME-RIO Network and PS Interlock System

All the RIO slave cards for all the magnet PSs are controlled by only four VME crates by using optical branch cards.
The SPring-8 control system adopted FDDI and Ethernet to communicate between WSs and VME crates. The SR
magnet PS setup and tuning will also be done through this FDDL

625

For a closed orbit correction, multiple sets of steering magnet PSs must be set simultaneously (local bump orbit).
Thus a rough timing system (~50 ms) must be installed for magnet control. The RIO's master to master [§8]
communication (data transfer time is less than 0.8 ms) system can be used if the optical fiber cables are distributed
between the four PS rooms as an RIO network [4]. Furthermore if RPC response time is less than 50 ms the FDDI
network can be used. (In cases using TCP/IP or UDP the mean response time of RPCs with the HP-RT was measured
1o be a few ms). '

A programmable logic controller (PLC) is used for the PS interlock system. The water flow switches and thermostat
switches of all magnets are connected as distributed input units of the PLC.

Figure 1 shows the VME and RIO network and an interlock system for the magnet PSs. The water flow switches and
coil thermostat switches are connected to the PLC (Sequencer) remote units, which are located beside the magnet bases,
using twisted pair cables. A normal relay close signal from the PLC output card is connected to the PS's interlock
input. Primary alarm information goes to a VME from a PLC's Ethernet port. Five PLC controllers are connected
through an optical fiber cable in the maintenance corridor.

Unix W.S.
T FDDI / Ethernet

| § NP

PS-Room D bm C PS-Room B

RIO Master Control
I l|3ranch Processor

PS-Room A .

A\ Field Bus

Optical Fiber Chble 2Mbps (RS485)

Device

‘ Branch Interface

St-PS|LLL Card

RIO

Type-A

N
Sequencer (1.¢)Host

/Q\ /m\ PTemmals |
| | Magnet

Interlock WaterFlow Sw.

Figure 1. VME-RIO network and PLC (Sequencer) interlock system for magnet PSs.

5. Software

A test program of the VME computer was written for the HP-RT, and a test operation was made with an St-PS for
on/off, reset and current up/down control. For the multiple current set sequence of the St-PS, messages from a Message
Server (MS) to an Equipment Manager (EM) have been designed [9]. Magnet name, final currents and set times are sent
to the EM from an upper layer program. Then the EM gets initial currents from the database table and calculates the
step currents and step times (dI and dt), using the current value limitations (see figure 2).

The database structure and the rough timing system of the magnet PS are now being studied. A GUI program and
man-machine interface programs will be completed by summer 1996. Al installation of the optical fibers into the 576
PSs will be done in December 1995. High power operation for the Q PSs will be done with the 48 Q-magnets
connected in series after the SR ring vacuum test in April 1996.

626

Current I I,f
Ii
3 : Lf
12¥ :
I P ;
0 dt Total Time

MS -->EM Send Data: Magnet Name, I final, Total Time

EM: dl/dt < (dI/dt) max

Figure 2. Multiple current setings must be made simultaneously. The Equipment Manager
(EM) calculates the step currents (dI) and step times (dt) and checks the maximum dl/dt .

6. References

(1] R.Tanaka et. al., this Conference.

[2] H.Tanaka et. al., RIKEN Accel. Progr. Rep. vol.24, 1990, p141.

[3] H.Takebe et. al., RIKEN Accel. Progr.Rep., vol.24, 1990, p156.

[4] H.Takebe et. al., Proc. of EPAC'94, London, 1994, p1827 .

{5] S.Harada, K.Matsuo, and M.Hasegawa. Tech. Rep. of Mitsubishi Elec.Corp., "Multi-drop
system"”, Mitsubishi EL Co., Nishi-Gotanda 2-21-1, Shinagawa-ku, Tokyo 141, JAPAN.

[6] H.Takebe, et.al., RIKEN Accel. Progr.Rep., vol.27, 1993, p147.

[71 H.Tanaka et. al., RIKEN Accel. Progr. Rep. vol.25, 1991, p184.

(8] H.Takebe, et.al., RIKEN Accel. Progr.Rep., vol.26, 1992, p176.

[9] A.Taketani et al., this Conference.

627

Fast Bunch Integrator

A System for Measurlng Bunch Intensities in the Fermilab Main Ring
Jeff Utterback, Greg Vogel
Fermi National Accelerator Laboratory™
POB 500, MS 307, Batavia, IL 60510 USA
Paper Prepared for ICALEPCS 95

ABSTRACT

In order to support the proposed luminosity increases in the Fermilab Tevatron Collider, a new Fast Bunch
Integrator (FBI) system has been developed. FBI is used to precisely measure the intensity of each bunch in
the Main Ring before injection into the Tevatron. These intensity measurements are particularly useful for
monitoring the coalescing process as it takes place. This newly designed FBI system will also be used in the
Main Injector when complete. The FBI system is comprised of a VME Front End which communicates with
Fermilab's ACNET via an Ethernet connection. The boards in the VME crate are a Motorola 162 CPU, a
Fermilab designed Pulse Pattern Generator (PPG), 2 Fermilab designed Integrator boards (one for protons and
one for antiprotons), and 2 "Comet Analog Digitizer" boards by Omnibyte corporation. The embedded
software makes use of the VxWorks operating system by Wind River Systems.

Precise timing pulses are produced by the PPG to trigger the integrators and the digitizers just as the bunches
are passing the detection equipment in the beam pipe. The embedded software is required to program the PPG
so that the pulses occur at the correct times. The embedded software also has real-time requirements because
the intensity readings must be retrieved from the hardware quickly to make the data available to ACNET for
console displays and for continuous plots.

Software has been created to produce a local terminal display which mimics the remote console access. This
local display is useful for system access in the field and for debugging purposes.

INTRODUCTION

The Fast Bunch Integrator (FBI) is a system which monitors the bunch intensity of the protons and
antiprotons in the Main Ring (or the future Main Injector) and supplies this data to ACNET. The data will be
particularly useful during the coalescing procedure. The data is supplied in a suitable form for continuous Fast
Time Plotting (FTP) and Snap Shot Plotting (SNP). The data is also supplied in a suitable form for all normal
slow ACNET accesses such as Parameter Pages, and Data Loggers.

THEORY

In order to increase the luminosity of colliding beam physics in the Tevatron, a process of coalescing must
take place in the Main Ring before injection. This process packs the Main Ring batches into high intensity
bunches. The end result of the coalescing process is 12 high-intensity proton bunches and 4 high-intensity
antiproton bunches. In order to get 36 on 36 in the Tevatron, 3 injections of 12 proton bunches and 9
injections of 4 antiproton bunches will be required.

The goal of FBI is to get an intensity reading for each coalesced bunch in the Main Ring. We are not trying
to create a "'scope picture' of the bunches, we are simply trying to get an intensity value for each bunch. To
achieve this goal, the intensity signal is used as an input to an integrator circuit. The output of the integrator
depends upon the magnitude of its input and upon the amount of time it is allowed to integrate. The integrator
takes two readings on each bunch; a wide gate reading and a narrow gate reading. The wide gate reading is
used to determine the intensity of the batches before coalescing. The narrow gate reading is used to determine
the intensity of the bunch after coalescing. The narrow gate reading should go higher and higher as the
coalescing process takes place. The wide gate reading should not change much during the coalescing process
but may decrease slightly due to losses incurred by the coalescing process.

*Operated by the Universities Research Association under contract with the U.S. Department of Energy.

628

11 small bunches
e aaaanaamaaae

one big bunch
after coalescing

M -

narrow gate
19ns=1/53MHz=0ne RF bucket width 19ns

wide gate | l

HARDWARE
The FBI project consists of a VME crate connected to ACNET via Ethernet. The boards in the crate are a

Motorola 162 CPU, a Fermilab-designed VUCD Tevatron clock decoder board, a Fermilab-designed VRFT
pulse pattern generator board, 2 Fermilab-designed integrator boards, and 2 Comet digitizer boards from

Omnibyte Corporation.

'VME Backplane

PROTON
Integrator

From Beam Pipe "Resistive Wall Monitor"

THE VRFT PULSE PATTERN GENERATOR

The VRFT pulse pattern generator (PPG) is used for all of the critical timing. It has 8 outputs which are
driven by the pattern generator. The pattern can be programmed so that pulses of various widths occurring at
various delays from the "Pattern Start" can occur on any output. The pattern memory is 64K bytes long so a
maximum pattern length of 64K buckets can be used. Each bit in a pattern byte corresponds to one of the 8
outputs. The pattern proceeds from one byte to the next as the S3MHz clock ticks occur.

629

The PPG outputs are used for the integrator gate pulses as well as the trigger pulses for the digitizer boards.
The PPG is triggered to start a pattern on the Main Ring A Marker. This signal occurs once per turn. The
PPG clock runs at 53MHz so the minimum output pulse width is 1/53MHz=19ns=1RF Bucket. This makes it
very convenient for the experts to set the pulse delays in terms of "Buckets off the A Marker."

THE INTEGRATOR BOARDS

The Integrator boards were designed at Fermilab. These boards take their input from the "Resistive Wall
Monitor" in the Main Ring beam pipe. The purpose of these boards is to integrate the input signal upon
command from the gate pulses that are provided by the PPG. The narrow gate is programmed to occur just as
the coalesced bunch comes by. The wide gate is centered upon the narrow gate and is used to integrate several
pre-coalesced bunches. The output of the integrator boards provides intensity signals to the Comet digitizer
boards.

In order to get accurate intensity readings, it is necessary to periodically take a reading when no bunches are
passing by in the beam pipe. This is called a ""background sample". The background sampie must be
subtracted from all of the bunch intensity readings. It was originally thought that the background subtraction
would be done in the Integrator boards, but the design has proven to be too difficult and now the background
subtraction is done in software.

THE COMET DIGITIZERS

The Comet digitizer boards contain a large amount of memory. Each time a digitize trigger occurs it puts
the new data in the next consecutive memory location. When the PPG pattern takes place, the data items stack
up in the Comet memory until the pattern ends and then the microprocessor can retrieve the data.

The time between bunches after coalescing is 378ns. We sample every other bunch at 756ns. In order to get
readings on all bunches, we take readings over 2 turns. The first turn yields the odd numbered bunches and
the 2nd turn yields the even numbered bunches. The PPG gets its "'start pattern” signal from the Main Ring A
Marker. The A Marker occurs once per turn and is always present when the Main Ring is running.

P1P2 P3P4P5P6P7P8P91011 12 P1P2 P3P4PSP6P7P8PO1011 12
batches IlllllIlIIIIlIIIIIIlIIlIIIIlllllllllllllllllllIllllllllllllll IIIIII Illll “m ““mm “m |."l| Illll Illll um Illll |.||l|

e LU S LU LA
e N N N N I T Y 1 A B B B
== | 111NN AV
S I T R T BT B T B B B

The PPG is programmed so that its pattern runs for 2 turns. The PPG will ignore the 2nd A Marker because
it is designed to ignore triggers until the pattemn is complete. After 2 turns have elapsed, one reading for all 12
Proton bunches and 4 Pbar bunches will be sitting in the respective Comet boards memories. The readings
will be in interleaved order such as P1 P3 P5 P7 P9 P11 P2 P4 P6 P§ P10 P12 in the Proton Comet and Al A3
A2 A4 in the Pbar Comet.

630

SOFTWARE

The embedded software makes use of the VxWorks operating system by Wind River. This is a multitasking
operating system that has very good network capabilities. The software makes its data available to ACNET
using an Ethernet connection. The embedded software has 3 main jobs to do. It must load the PPG to create
the correct pulse pattern for system operation, it must retrieve the intensities from the Comets in a timely
fashion and it must make the data available to ACNET for plots and parameter pages.

LOADING THE PULSE PATTERN
From ACNET the experts have SETTING capability for the various pulse delays and pulse widths. Here is

an example of the settings.

P1 gate delay O buckets Al gate delay 30 buckets

P2 gate delay 20 buckets A2 gate delay 50 buckets

P3 gate delay 40 buckets A3 gate delay 70 buckets

P4 gate delay 60 buckets A4 gate delay 90 buckets

P5 gate delay 80 buckets Pbar background 300 buckets

P6 gate delay 100 buckets

P7 gate delay 120 buckets Proton Naro Gate Width 1 buckets
P8 gate delay 140 buckets Proton Wide Gate Width 11 buckets
P9 gate delay 160 buckets Pbar Naro Gate Width 1 buckets
P10 gate delay 180 bucket Pbar Wide Gate Width 11 buckets
P11 gate delay 200 buckets Background Sample Width 5 buckets
P12 gate delay 220 buckets Digitize Pulse Delay Off Wide Gate 0 buckets

Proton background 300 buckets Digitize Pulse Width 1 buckets -

These settings are kept in battery backed RAM on the CPU board, so that reasonable settings will always be
available after a reboot. Any time a setting is changed from ACNET, the embedded software saves the new
setting in BBRAM and then loads the new pulse pattern into the PPG. That way the pattern is all set to go
when ACNET asks for intensity data. The pattern settings are not expected to be changed very often.

RETRIEVING THE INTENSITY DATA
When ACNET asks for intensity data a routine is called which performs the following:
1. Enable the PPG external trigger so that the next A marker triggers the pattern.
2. Wait for the pattern to end by watching the Comet data counter.
3. Disable the PPG.
4. Retrieve the data.
5. Sort out the data.
6. Subtract off the background.
7. Return one pattern's worth of intensity readings to the caller.

This routine takes about 250 uS to execute which is fast enough even if it is called at 720Hz for Fast Time
Plots. It returns intensity readings for all 12 proton bunches and all 4 antiproton bunches even if ACNET is
only asking for one reading. It would be inefficient to attempt to change the PPG pattern to get just the
particular bunch that ACNET is asking for. The software just takes the intensity reading that it needs and
returns that single reading.

When this project was first conceived, we thought that we would let the PPG board continually play its
pattern and let the data stack up in the Comet boards memory to be periodically retrieved by the
microprocessor. In that way, data for every turn would be taken and would be available for ACNET. It turns
out that it takes 1 uS per word to retrieve data from the Comet which is typical for off board VME access, so
retrieving large blocks of data requires a lot of dead time when the PPG must be disabled and several turn's

- worth of data must be allowed to pass by. Experience has shown that it is better to wait until ACNET asks for
data and then enable the PPG for one pattern each time data is asked for. For Snap Shot Plots, the PPG wﬂl be
enabled for several patterns so that several consecutive turns' worth of data is taken.

631

USER INTERFACE

The FBI system can be accessed via a normal Fermilab ACNET console parameter page. Bunch intensities
are displayed in text form and updated at a 1Hz rate. Bunch intensities can also be display graphically using
the standard Fast Time Plot and Snap Shot Plot facilities. The Fast Time Plot updates at a 720Hz rate and the
Snap Shot Plot gathers its plot data every other turn. The gate delays and gate widths can be set by a user at
the parameter page.

A local terminal display has also been created for the FBI project. The local terminal is simply a standard
VT220 terminal attached to the CPU board in the VME crate. Software has been created to display all of the
pertinent readings and settings. The local terminal display has proven to be quite useful during the setup and
debugging phase.

CONCLUSION

The FBI project is a blend of commercial hardware with custom hardware and a commercial operating system
with custom software. The information from the FBI system is made available to the Fermilab ACNET system
so that it can be displayed and analyzed using a typical ACNET Console. The end result is a successfully
functioning system which meets the real-time needs for information about the bunch intensities in the
Fermilab Main Ring.

632

Drift-Chamber Gas System Controls Development
for the CEBAF Large Acceptance Spectrometer

M. F. Vineyard, T. J. Carroll, and M. N. Lack
Department of Physics
University of Richmond, VA 23173

ABSTRACT

The CEBAF Large Acceptance Spectrometer (CLAS) is a superconducting toroidal magnet with a large volume of
drift chambers for charged particle tracking. The performance of these chambers depends on accurate monitoring and
control of the mixture, flow rate, pressure, temperature, and contaminant levels of the gas. To meet these
requirements, a control system is being developed with EPICS. The interface hardware consists of VME ADCs and
three RS-232 low-level hardware controllers. The RS-232 instruments include MKS 647A mass flow controllers to
control and monitor the gas mixture and flow, MKS 146B pressure gauge controllers to measure pressures, and a
Panametrics hygrometer to monitor temperatures and the concentrations of oxygen, water vapor, and ethane. Many
of the parameters are available as analog signals which will be monitored with XYCOM VME analog input cards
and configured for alarms and data logging. The RS-232 interfaces will be used for remote control of the hardware
and verification of the analog readings. Information will be passed quickly and efficiently to and from the user
through a graphical user interface. A discussion of the requirements and design of the system is presented.

INTRODUCTION

The primary instrument in Hall B at the Continuous Electron Beam Accelerator Facility (CEBAF) is the CEBAF
Large Acceptance Spectrometer (CLAS) shown in Fig. 1. This device is a toroidal multi-gap magnetic spectrometer
and is described in detail in the Conceptual Design Report on CEBAF Basic Experimental Equipment [1]. The
magnetic field is generated by six iron-free superconducting coils. The particle detection system consists of drift
chambers to determine the trajectories of charged particles, Cerenkov detectors for the identification of electrons,
scintillation counters for time-of-flight measurements and electromagnetic calorimeters to identify electrons and to
detect photons and neutrons. The six segments will be instrumented individually to form six independent
spectrometers. Commissioning of the CLAS will begin in the fall of 1996.

The tracking of charged particles is accomplished by three regions of drift chambers that are located at different radial
positions from the target. The inner chambers, called “Region I”, surround the target in a region of low magnetic
field. The “Region II” chambers are somewhat larger and are situated between the toroidal magnet coils in a region
of high field, while “Region III”” chambers are large devices located radially outward of the magnet. Achieving the
design goals for an accuracy of better than 0.5% in momentum and angular resolution of = 1 mrad requires tight
constraints on the gas mixture within the chambers. These constraints are discussed in detail in the User Manual and
Operation and Safety Procedures (OSP) for the Hall B Drift Chamber Gas System [2] and require control and/or
monitoring of the flow rates, mixture, pressures, temperatures and contaminant levels of the gas.

There will be two levels of control in the gas system. The basic flow control loops and alarm system will be
hardwired at one level. At a higher level the system described in this paper will control and monitor the gas system
in such a way as to allow:

» Safe operation of the gas system.

+ Remote monitoring of signals.

» Remote control of system elements.

+ Ease of use via a graphical user interface (GUI)

¢ Detection of anomalous operational modes, alerting the users of such situations and, where possible,

executing automatic procedures to ensure personnel and hardware protection.

+ Archiving operational parameters for future restoration and analysis.

» Automation to handle the processing of very large numbers of signals.
The drift chamber gas system control has been identified as one of the highest priority components of the Hall B

control system [3, 4].

633

-7‘.Cerankw 3

Figure 1. Exploded view of the CLAS showing the magnet and the various detector components.

THE DRIFT-CHAMBER GAS SYSTEM

The gas system has been designed to meet the stringent requirements outlined in the User Manual and OSP for the
Hall B Drift Chamber Gas System [2]. A schematic of the system is shown in Fig. 2. The basic gas system
operation consists of mixing, filtering, monitoring, and recirculating (Regions Il and ITI) the gas. When raw gas
arrives on site, it is analyzed using a residual gas analyzer (RGA). Once accepted, it is cleared for use with the
CLAS drift chambers. During steady state operation, two fresh gases are precisely mixed to achieve the correct
relative fraction. The newly mixed gas is stored in large buffer volumes that supply the process loop that contains
the CLAS drift chambers. The pressure and percentage of ethane in the gas in the buffer tanks are continuously
monitored. As the mixed gas enters the loop, it is first filtered to remove contaminants. An adjustable orifice then
drops the pressure and controls the flow. For fine tuning of the gas mixture, additive bubblers are then provided as
an option. Directly following the bubblers the oxygen and water content and the temperature and flow rate are
monitored before the gas leaves the shed for the hall. As the gas enters the hall, it passes through heat exchangers to
damp temperature fluctuations. The gas then enters the chambers where it serves its purpose. At the chamber exit
manifolds, the gas passes by safety bubblers. Downstream of the manifolds, the gas temperature and differential
pressure with respect to atmosphere are monitored. This pressure reading is transmitted back to the shed where it
controls a proportioning solenoid valve in front of a pump. The pump and “throttle valve” pull gas out of the hall
while controlling the pressure in the chambers. Once back at high pressure again in the shed, oxygen and water
monitors continuously monitor contaminant Jevels. Finally, a fraction of the gas is exhausted and the rest reenters

the cycle above the filters (Regions II and ITI).

634

Figure 2. Prototype of the main window of the graphical user interface for the CLAS drift chamber gas system
controls. A schematic of the gas system is shown with digital displays to present the analog information.

The various sensors are powered and monitored with three different hardware controllers that have local readout and
programming capabilities. The flow controllers and transducers are operated with two MKS 647A mass flow
controllers. Pressure sensors are controlled with three MKS 146B pressure gauge controllers. A Panametrics
hygrometer is used to monitor temperatures and the concentrations of oxygen, water, and ethane. All of these
instruments have RS-232 interfaces for remote control and monitoring. Analog signals are also available for many
of the parameters. The instruments have programmable alarms that produce signals that are used to bypass or shut
down portions of the gas system. In the event of a failure due to any of a number of conditions, the chamber is
bypassed automatically with electronically actuated valves immediately before and after the chambers. These safety
features are hardwired and under no software control. The computer control system is needed to monitor parameters
and alert the operator of abnormal conditions so that they may be corrected to avoid hardware-activated shut downs.
The system is also needed for remote control of the hardware and archiving of parameters for analysis.

THE CONTROL SYSTEM

The control system is being developed within the framework of the Experimental Physics and Industrial Control
System (EPICS) [5]. A schematic of the control system hardware is shown in Fig. 3. The operator interface (OPI)
is a Hewlett Packard workstation with an X-windows GUI. The input/output controller (I0OC) is a Motorola MV
162 single board computer running the VxWorks operating system and mounted in a VME crate. The crate also
contains two XYCOM XVME-560 analog input cards and a Green Spring IP-octal 232 industry pack.
Communication between the OPI and the IOC is accomplished through ethernet with the EPICS network
communication software called Channel Access. The system includes RS-232 interfaces to the two mass flow
controllers (MFC), the three pressure controllers (PC), and the hygrometer (HYG).

635

Figure 3. A schematic of the control system hardware
showing the operator interface (OFI), the input/output
controller I0C) and the low-level hardware controllers.

Figure 4: A schematic of the RS232 software interface

636

Analog Signals

The analog signals from the gas system instrumentation
will be continuously monitored with the VME ADCs
operating in the 32-channel differential input mode.
Device and driver support routines for the XYCOM
XVME-560 have been obtained from the SSC and are
running on our EPICS development system after some
modifications. All of the analog signals are being
configured for data logging and many for alarms.

RS-232 Interfaces

Remote control of the hardware and verification of the
analog readings will be accomplished through the RS-
232 interfaces. The RS-232 device support software has
been written and tested for the flow and pressure
controllers. The device support for the Panametrics
hygrometer will be developed in the near future. An
overview of the RS-232 software interface is illustrated
in Fig. 4. Standard EPICS analog output records are
used to send commands to the device support.
Commands without special parameters use a common
analog output record, while those with special
parameters each have their own analog output record.
The device support is split into synchronous and
asynchronous parts. This is necessary because EPICS
is a synchronous system that cannot wait for a slow
asynchronous device to process commands and respond.
The synchronous device support is essentially a
simulated synchronous device. It utilizes two Tx pipes,
which are standard data structures in the VxWorks
environment; one to send commands and one to receive
responses. These pipes communicate with the
asynchronous device support, which is essentially an
infinite loop that continuously checks the output pipe
for a command. The asychronous device support is
spawned as a task in VXWorks, and it is what actually
communicates with the device. Once a command is
found, it is converted into an ASCI string of a format
acceptable to the device. The asynchronous support
then waits for a response from the device. Once it is
received, the response is placed in the other of the Tx
pipes, where it can then be removed by the synchronous
device support. Having been removed, the response is
placed in a standard EPICS string input record. If any
errors are encountered, the device support will instead
place an appropriate error string into the record. Once
in this record, the response can then be accessed by the
GUL

Graphical User Interface

The GUI is being developed using an EPICS tool called
the Motif Edit and Display Manager (MEDM). The
main screen of the GUI will consist of a schematic of
the gas system with the analog information presented in

digital displays. A prototype of this window is shown in Fig. 1. Along the bottom of the main screen will be a

menu to bring up windows for the different RS-232 instruments. These lower level screens include buttons, which
are connected to the analog output records and send commands and text displays connected to the string input records
for the responses. Examples of these screens are shown in Figs. 5 and 6. '

Figure 5: The GUI screen for the mass flow controller.

SUMMARY
A control system is being developed with EPICS for the drift-chamber gas system for the CLAS detector at CEBAF.

The gas parameters will be continuously monitored and configured for alarms and data logging. Remote control of
system elements will be accomplished through RS-232 interfaces to low-level hardware controllers. Information
will be passed efficiently to and from the operator via a GUIL. The design of the system is nearly complete. Device
support software has been written and tested for all the hardware except the Panametrics hygrometer, and prototype

637

GUI screens have been developed. Future work includes device support development for the hygrometer,
implementation of valve status monitoring, and integration with other components of the Hall B control system.

ACKNOWLEDGEMENTS
This work is supported by the U. S. Department of Energy under Contract No. DE-FG05-88ER40459 and by the

University of Richmond.

REFERENCES

[1] Conceptual Design Report, Basic Experimental Equipment, CEBAF Report, April, 1990.

[2] User Manual and OSP for the Hall B Drift Chamber Gas System, S. Christo,W. Major, M. Mestayer, R.
Wines, and Pete Woods, Working Draft CEBAF Report, June, 1995.

[3] Hall B Slow Controls System Requirements Document Overview (SRD), D. Barker and the Hall B Controls
Group, Draft CEBAF Report, June, 1995. Information on the system can be found on the World Wide Web at
http://www.urich.edw/~vineyard /SRD.book_1.html.

[4] Commissioning the Hall B Experimental Equipment, Draft CEBAF Report, June, 1995.

[5]1 The Experimental Physics and Industrial Control System (EPICS) is a set of software tools originally developed
by Argonne National Laboratory and Los Alamos National Laboratory for the purpose of building distributed
control systems. Information on EPICS can be found on the World Wide Web at
http://www.aps.anl.gov/asd/controls/epics_home.html.

ot

Figure 6: The command subscreen for the mass flow
controller.

638

Software Project for SPring-8 Linac Control

H. Yoshikawa, Y. Itoh, H. Sakaki, A. Kuba, M. Kodera, T. Taniuchi,
K. Tamezane, T. Hori, S. Suzuki, A. Mizuno, K. Yanagida and H. Yokomizo.
JAERI-RIKEN SPring-8 Project Team,
Kamigori-cho, Ako-gun, Hyogo, 678-12 JAPAN

The injector Linac control system for SPring-8 is under development and the first trial will be held soon for testing total
performance. We designed this system using object oriented methodology to integrate the operator environment and the
database architecture and for easy maintainability. A disadvantage of the object oriented approach is a long lead time for
abstraction, modeling and definitions of entities and relations. We represent the status of our software project management

and our know-how of rapid application development.

1. Introduction

The control system of the SPring-8 injector Linac has been based on the concept of object oriented design from the
beginning of construction. The purpose of this Linac is not only injection to the storage ring but also injection to a new
VUV ring SUBARU , the SASE source, a parametric x-ray source and possibly other purposes as they arise.

As a matter of course this software system will be modified continuously as the hardware changes. Thus we must consider
not only the functionality of this system, but its maintainability, flexibility and presumed longevity.

1. Applicability of OOP

At the beginning of this software project we discussed which was better - conventional structured or object oriented
programming. The former is very mature and many companies have huge resources. If we could write down a complete
specification of the software (before the design of hardware devices), some big companies could create the entire software
system and it would not be necessary for us to hire programmers. But requirements of our Linac control system are high
flexibility and adaptability to future modifications and upgrades without large costs in manpower. That is to say, it would
be inevitable that we would have to understand the inner structures of the whole program. The modemn belief is that
object oriented techniques must be applied as the methodology for management of the complexity of such a large scale
program, and thus we chose the OOP paradigm.

One of the disadvantages of OOP is a long lead time. It takes a long time before a schematic of the system for users
(operators) appears. We faced the additional problem that our staff was not familiar with the concept. It was predicted
that a long time would be required for study of OOP and preparation of a satisfactory class library. However, at the
beginning the SPring-8 project schedule was stretched by budget conditions. There was not enough staff and money, but

there was time.

The next question asked concerning our use of OOP was whether the scale of the software system was or was not
appropriate. When you require the system for control of a small experiment, OOP is too heavy. However, you can still
use ready-made class libraries for the GUI and windows.

The number of channels required for control of the Linac are as follows.

[The number of signals |
DI | DO | AI | AO | RS232c | GPIB | step motor
1605 | 749 | 440 | 139 3 25 108

The scale is large enough, but the number of kinds of devices is small. For instance, several kinds of magnet power
supply are similar to each other. Spatial replication of device structures is the rule, e.g. Q-magnets, ion pumps and beam
monitors. The configuration of the Linac is shown in figure 1. -

The characteristics fit well with the class hierarchies and inheritance of OOP. Thus we felt that it would be possible to

639

(sPring8 Linac)

= tibe Ho tube ——

| ? IPA

GUN

0S-9Ver 2
CPU 68030

VME #1 VME #2

@

(Architecture of Machine Control Object in VME (OOPS)) MMIF

Figure, 1. Configuration of the Linac.

create the required libraries on the appropriate timescale.

III. Progress of the project

Initially, we made an abstraction of the functionality of each atomic device, macro devices and the whole Linac at a
software engineering level. The behavior of individual devices is fairly simple. Most of them require only CW operation;
and complex feedback (feed-forward for the electron beam) is not needed.

The modulator of the pulsed Klystron is an unstable device because it includes discharge elements, but this instability can
be hidden from upper level processes, which can consider it as a high voltage power supply.

A. Modeling of the system

We made a common model (MACHINE MODEL) of the status conditions of all devices, as shown in figure 2. We
proposed to match the specification of device behavior to this model. The model is event-driven, and a message from
some other object is the trigger for a status change. Messages are standardized for all devices inside SCCs (SPring-8
Linac Control Commands). When a device in STANDBY status receives a “GO RUN" SCC, the device acts to change to
RUN status. Individual differences in this behavior are encapsulated in the elemental control processes. A macro device,
which consists of several atomic devices, operates similarly and forwards SCCs to its internal element devices.

B. Bottom up approach

Code writing began at the level of device drivers. These were written in C due to its potential portability to advanced
CPU boards in the future. VME was chosen as the hardware platform as it is popular world-wide and high performance
new boards appear daily. Device drivers in C have advantages not only for new CPU boards, but also for new /O boards,

as shown in figure 3.

The process configuration of this system is shown in figure 4. We worked from the lower levels of device drivers, machine
control processes and communication processes to the upper level operation process. The behavior of lower level control

640

N — | [—

RUN .

N\, .. EMERGENCY
STANDBY Yrwesze INTERLOCK .- «(EMERGENCY
—~~~“-~~__~_ ______--:_'_’_)S:—-N
e N\ EMERGENCY
STOP e FAULT

: - [' «——— transition using Soﬁwarﬂ

@------ transition using Hardware

(| Behavior of "MACHINE")

Figure. 2. Status transfer of MACHINE MODEL.

processes depends on hardware design. We required the specification of signal handling to hardware before the software
design was fixed.

The communication process is implemented via the original protocol SCD (SPring-8 Control Datagram) [1]. The network
attaches directly to the objects, and network transparency is very important. Moreover the communication process is the
most important in actual total performance. We isolate the Linac control system segment from other protocols, and only

SCC packets are transmitted on it.

The Operation process on EWS (Engineering WorkStations) includes a man-machine interface based on X11 and behavior
definitions of device operations. The development environment on EWS is now very sophisticated and many kinds of
CASE tools and GUI builders exist. We consider that processes at this level must be modifiable by accelerator specialists

and operators to mature.

IV. Framework of control process

The fundamental structure of MACHINE MODEL is shown in figure 5. Receiving of SCCs and interrupts from hardware
are recognized by the process as signals. The process checks status, searches the lookup table and jumps to the selected
procedure. All input and output except hardware interrupts are dealt with as SCCs. This framework is common to all

present system present system
b B - Interface ot between
H b C-drivers and
| |
MPU MPU
68030 68030

i
e ==

future system future system

device drivers New_CPU_base.a
A for New CPU .
e e Interface of betwoen
C-dnivers and CPU
Power PC e.t.c Power PC a.t.c
(a) assembler language drivers (b) C language drivers

Figure. 3. Differences between assembler drivers and C drivers.

641

EWS side

Ethernet

VME side

Linac components

Figure. 4. Hierarchy of processes

processes and is very simple. We represent the framework and the definition of behaviors to programmers, and they write
the local procedures. The difficulty in defining behavior is to hide the time sequence of hardware action.

In 2 most important aspect, we were forced to change the ways of thinking of operators. For example, the modulator of
a pulsed klystron has two phases of fault, only High Voltage Down and both High Voltage and Low Voltage Down, in
which latter it takes half an hour to warm up the heater of the thyratron and klystron. This is not matched with MACHINE
MODEL. We suppressed heat up time in “STOP" status, and the “GO STOP" action includes “heater on". “Warm Up" is
defined as a necessary condition of the action to “GO STANDBY" and is independent from identifying of status. Every
process on VME and EWS has this same framework. Input to the processes on EWS includes X-window events.

Inﬁ:ﬁze r ~
Machine Controt Machine
= Control
Initialize
o Signal Wai
nal Classify
So Job
Send il Inter
SCC

$CC
input Lookup table) sce
*’1 |
Y 1
H

Teble [Linac
—4—» | component

Figure. 5. Framework of control process.

642

[—— i A R e e

-

T AT T e EeT =1 . [

70 80 %0

Software Enginsering " Ovject Engineering

important o ; .
Subject | motivations /P ";‘;'ﬁ:’z‘V maintenance / expansive,efficient

Programming | characteristic / structural strwturaldatﬂ / object oriented
Technique ~ |-2rgranming / programming ot et

Deta |fesystem /" op /PR rehosion

Tools | compiter / Yo / B Sows ropeclory

Proji dapend on ing
et | e Pl ype elitism

System
Key-words / Do, OB ABA
RDBMS RDEMS/OODBMS

Figure. 6. Trend of software technology.

V. Operation process

Operation processes are located in EWS, This process includes the X-window procedures and operation sequences in the
call back functions. We use SoftBench as a CASE tool, and UIM/X as a GUI builder, since it is suitable for combining
with SoftBench. A few widgets which we need are written by us, but primarily Motif-based widgets are used.

We prepared three types of man-machine interface program as operator processes. One is a character-based SCC handler
for local debugging on VME. It is able to be used through a telnet command from anywhere. The second is a ’primitive’
window, which is prepared by the programmer and supports individual device action.

The last is the graphical window, the one to which actual operators interface. On this level, the naked action of MACHINE
MODEL is hidden under the X11 environment, and virtual devices appear in front of operators. The virtual devices are
objects which have several devices in them, for instance, an energy analyzer (bending magnet, slit and Faraday cup),
emittance monitor (Q-magnet, slit and wire grid monitor), or vacuum system (many ion pumps and cold cathode gauges)
etc.

The parent process of all operation processes is also one of the graphical operation processes, called LinacMain. Linac-
Main is the default receiver of SCCs from any VME control process which does not have an operative parent. Finally,
this Linac can be operated by only pushing the buttons “STANDBY" and “RUN" in LinacMain.

The control of RF phase is beam-oriented. Previously it had been controlled by a maximum output current condition.
However we now detect the phase of the beam wakefield at each accelerating section by a directional coupler near the
dummy load, and set the phase of the input power to reverse it. This sequence is written into the operational process “RF
system", and when we get fundamental preset values auto-phasing becomes possible.

In the near future many virtual device processes will be written to make the environment of operators more comfortable.
Moreover, the modifications for injection into SUBARU, and for beam transport to SASE will be done in the next few
years. In this situation the development environment of the software is very important. Use of CASE tools is inevitable,
and the advancement of operating system version will be discussed at the level of revision management and efficiency of

resource use.

V1. Strategy for construction

The number of persons in the Linac group is eleven, of whom six are working on software. The software staff consists
of an overall coordinator, VME programmers, communication process designers, database builders and a handler of
visualization tools. By September 1996 all programmers will have become GUI writers.

643

The first phase of the conceptual design was discussed by only a few members, whose initiative led to understanding of
the OOP concept and design policy for others. Each member designs his part, and the team has a discussion to review it.
In this phase, it is important to decide not only the functionality but also the structure of the program. Finally we present
these prototype codes to programmers, and we require them not to change the structure, except for local functions of

individual procedures.

We do not have enough manpower to write all the code of this system, but the job sharing which results can be highly
cost-effective; it also helps us to keep a consistent design policy from beginning to end. It took two years to establish the
prototype code of MACHINE MODEL. The fundamental structure of MACHINE MODEL has required little change,
though several options for adaptation to the hardware design of devices have been added. As a result of OOP such

modification is very easy after the plan of modification is chosen.

VII. Conclusion

Our project has had a software engineering history as shown in figure 6. We had to learn the concept of the new
methodology, and had to change our way of structured programming. For a software project such as this, to keep a
consistent policy and sense of design is very important for purposes of continuity. If you do not have usable class
libraries, the project manager must endure a long lead time. But in cases where the scale of the system fits OOP, the final
total load is smaller than in conventional structured programming (figure 7). If you can find good class libraries, which
your system is able to use, the necessary manpower is drastically reduced.

References

[1] H. Yoshikawa, Y. Itoh, K. Tamezane, Y. Sakaki, M. Kodera, H. Yokomizo. “Class structure of the Injector Linac
control system of SPring-8" Nucl Inst & Method in Phys. A352, 216-217 (1994)

Planning | CSF analysis Design ~ I

& man-day

{ Modsling | Rapid Application Development | Maintenance |
Preas for improvement in the Quality Easy maintenance
Reduce of the work-ioad

Figure. 7. Manpower at each phase of a project.

644

Class Analysis and the Object Model in the KEK PF Linac console
Isamu Abe and Kazuo Nakahara

KEK, National laboratory for High Energy Physics
Ohol-1, Tsukuba-shi, Ibaraki 305, Japan

Abstract

The Linac device controllers (front-end computers) and mini-computers for the KEK PF, which has been
operating for more than ten years, had to be renewed during 1993 because there was no longer support from the
hardware manufacturers. In 1994, the B-Factory project at KEK was approved and will start from 1998, and this
requires the Linac to be upgraded from 2.5GeV to 6GeV. The control system also needs an increase in size for the
additional klystrons, magnets, vacuum systems and so on At the same time, the console programs must be
modified to be suitable for B-factory operation. In the modification phase, in order to reduce the maintenance and
development costs, some of the device controller SBCs (Single-Board-Computers) will be replaced by PLCs
(programmable logic controllers). Investigations[1] were launched late in 1994 in order to determine the /O
stability and network possibilities. In this paper, the software for the device layer controller (PLC) and the
human interface layer to the B-factory are discussed on the basis of the Object Oriented Concept.

1. Introduction
An object-oriented analysis and design[2] of a human interface (operators console system) have been

adopted for the PF Linac. The old console system has a graphic display which was written using FBHG (Fujitsu
Basic High Grade) on DOS/Windows (Japanese version). It has not been very simple to change the display and
its programs, which were written in structured FBHG language. To change the conventional language to a new
OOP one requires a big paradigm shift and there are two aspects which are both good and not so good. One is
higher productivity with the OOP, although the learning cost for users is also higher. Some disadvantages of the
OOP are also becoming clear. We are therefore providing a root, or super class, from which one can derive
objects for users (developers / operators) without any programming on the new GUI (graphical user interface)
windows. Users can make control and display windows very easily and quickly by just copying a visual object
from its mother class, while inheriting methods and properties. After naming the object and changing some
properties if necessary, it can be run as a flexible user program on the Linac console.

2. Classes in an accelerator domain :

For an entire accelerator domain, a rough object-oriented analysis was made,and then the control-system
design proceeded step-by-step based on an OOA (analysis) . The OOA and OOD (design) were repeated several
times for each field in the accelerator domain. As a result, we divided the accelerator control system into to two
major categories: 1) device category and 2) generic category. The generic category can be divided into classes: the
data and information process class, the generic tasks class, the beam physics class, and the GUI class [3]. In this
paper the device class and GUI class are mainly discussed.

3. Device class

The Linac is composed of many devices, such as magnets (beam transport), klystrons (RF system),
injection system, beam monitors (Beam Position Monitor, Core Monitor, Profile Monitor, etc.), vacuum
system, trigger system, control system and safety system, which are located along its length. These grouped
systems, which have physical-device objects, belong to the device category. The device category has several root
classes and/or super classes. Generally, it has subsystems as a child class. In most cases, the super class has a
definite behavior, properties and messages to be handled independently. When there are many similar device
objects, they can sometimes be classified in the same group in a bottom-up approach. Each object is derived
from its mother class. The magnet and the power supply, which are geographically located along the beam line,
are typical examples. Once they are well defined, these classes and objects do not have to be changed very often;
it is only necessary to install or remove objects when the Linac is physically modified. We may find a common
or standard class which might be shareable in several laboratories if it is well analyzed. In 1989, the device and
access procedures in an accelerator domain were well analyzed and defined at CERN as reported [4] at
. ICALEPCS'91. The CERN device protocols were installed in the device-layer computers. In our system, we will
attempt to analyze objects in the near future, so as to distribute them on the two layers of the computer system
through a network, using the emergent CORBA, OLE or something similar. The root or super class, sub-class,
and device element relations are shown below:

645

device category Device class sub-device class real-object

4. Generic category
4.1) Data and information class

The data and information (with commands) exchanged between the devices or equipment of the accelerator
are defined as objects separate from device objects. Data which is sent to or received from device classes are
supposed to be processed in some way at the operator console or by a data-base system or generic task class.
Normally, data must be processed in a way that is already known, or decided by an expert based on experience or
knowledge. As an example, magnet and vacuum data are commonly displayed as real-time data or a history graph
at the operator's console, and then sent to an upper/lower level check filter for the alarm system. Since it is
already known how to process most of the accelerator data, we can make data-process classes rather easily
abstracted as re-useable ones so that data can be collected as encapsulated objects in a data base.

4.2) Generic task class
There are no actual devices in the generic task class; it is a type of heuristic knowledge class: how to

operate an accelerator, or how to run each device. There are many ways to run the Linac and each person can
have his own methods to handle the devices or the accelerator to obtain beam. Although it is difficult to find a
standard or common class in this generic task, a typical procedure must be defined for the actual operation of the
Linac. There are very few derived sub-classes in this category. Each accelerator must have its own class for every
operation or diagnosis; there will then be a few shareable common classes among the different laboratories

- concerning generic tasks.

4.3) Beam physics class
Mathematical models are commonly used for beam dynamics calculations and their handling on the
networked computers. Some people use OOP methods for modeling, while others do not. Since these are carried

out at the accelerator-design phase, they are not considered here.

4.4) GUI class
In the GUI class, the object-oriented approach has been a most effective way to make an easy-to-use and

flexible graphical user interface on Windows. The accelerator GUI requires some graphical icons, which are for
abstract devices on the Windows display. The graphical icon has derived properties and methods based on its
mother class. Two layers of the mother and child classes represent a more convenient way in actual operations or
in the development phase of the GUI. A deeper class should be related to the mother class, behind which it does
not appear on the GUI Simple changes in the properties and methods are easy to make in the property lists or
windows. There are necessary GUI elements, which should be abstracted objects or those encapsulated for the
Linac operator:

1) Device_Icon, Operational_sw/lamp_Icon,

2) History_graph, Two-dimensional_graph, Charts

3) Help_menu(www viewer), Text_display,

4) Video_display,
These Icon or GUI elements must be a re-useable mother class which can inherit many useful properties. Some
commercial software packages exist which could match our needs.

5. Device layer controller
The magnet and vacuum systems used to be controlled by SBC (single board computer) local controllers

which were connected to CAMAC. CAMAC had been running until it was replaced by the VME system. Since
we have tried to reduce maintenance costs, the replacement of the old SBC with a PLC was investigated
Although the PLC was originally not intended for a high-speed multi-purpose machine interface, being used in
industry as well as other fields, the DAC and ADC modules are sufficiently stable for use with power supplies.
The performance of the PLC is almost good enough to control not only the magnet power supplies, but also the
vacuum systems and klystron modulators as a low-speed control. The cost is less than that of other interfaces,
such as VME or CAMAC, and maintenance is easier. Since most of the PLCs can be connected to Ethernet, it is
now possible for them to be controlled from host computers, even though each maker has its own network. The
PLC which we have selected has two CPUs: one is for /O and the other is for communications. TCP/IP and
UDP are available protocols which are used to communicate with other computers on Ethernet. The PLC has its

646

<M F ARy ST I O R ERTEIEII Ths 6 e

own internal programming and tools, and acts as an intelligent controller using ladder logic. Even from
Windows 3.1 with a Pentium 90MHz CPU, a 10 to 20 per second refresh rate is possible with the PLC. That is
adequate scan speed for an operator when he adjusts the magnet current or other variable.

6. PLC class
PLCs are produced by several companies and there are no standards among the manufacturers. A PLC can

support various types of I/O modules: such as DI/O, DAC, ADC and IRQ. The PLC can be a member of the
super class at a device-layer computer and the IO modules are defined as belonging to the sub-class. The PLC
super class must communicate with the PLC communication class or friend classes. In the PF Linac, the
abstracted device classes are also set on the human-interface layer so the PLC communication class could
communicate with the PL.C device objects which are distributed at the device layer through the network.

7. Implementation
The PLC used for the Linac device controller will be connected to about 400 sets of magnets, 100 sets of

vacuum systems and 60 sets of klystrons, which are slow devices to control. In late 1995, a prototype will run
the vacuum system at the 2nd sector of the PF Linac. In advance of the hardware system, the first version of the
software development has been completed, based on object models using the OMT (Object Making Technique).
Device classes (klystron, magnet, vacuum, gun, monitor and others) are defined and coded as a super class on the
control pack. The instances (real objects) are derived from their control packs on the GUI windows: for example,
the magnet class has its sub class (such as Q-magnet, STC and bending-magnet). Each device class may use a
PLC object for intercommunication. It is also related to the other super (or friend) class. Since Visual BASIC
has a simple inheritance system, a common mother class has been coded based on the OMT using Visual C++
and was made as *.VBX tools on Visual BASIC. These classes were developed as a control pack which can
appear in the toolbox in Visual Basic when it is in interpreter mode. Visual BASIC has limitations in memory
size and execution time when many objects are created in the Windows derived from the mother class. A more
objective language having better OOP features is now being tested in order to solve these problems.

8. Results and conclusion

Adequate speeds for the control devices were achieved by object oriented programming in the GUI and at
the device layer. We could actually make common classes for the PLC device objects and the abstracted GUI
objects. The standard class has resulted in a flexible control system at the console of the PF Linac. The OOP
also provides users an easy way to make modifications and to produce a highly productive control system for

accelerator users or machine operators.

References

[1] Feasibility study for PLC as a device controller, ~A. Shirakawa, Linac conference 1995, Osaka
[2] Object-Oriented Modeling and Design James Rumbaugh, Prentice Hall, Inc.
[3] GUI object model in Accelerator control
I.abe, K.Nakahara, M.Mutoh, Y.Shibasaki, Linac conference 1995, Osaka
[4] Control Protocol: The proposed new CERN standard access procedure to accelerator equipment.
G. Baribaud and etc. ICALPCS91, p591

647

Object Oriented API Layers Improve the Modularity of Applications
Controlling Accelerator Physics

T. Birke, R. Lange, R. Miiller

Berliner Elektronenspeicherring-Gesellschaft fiir Synchrotronstrahlung m.b.H.
(BESSY), Lentzeallee 100, D-14195 Berlin, FRG*

Abstract

With EPICS the architecture of core software and standard control programs is largely defined by the given tools. The installation of EPICS
at BESSY 1I focuses attention on configuration and improvement issues. This does not cover the applications measuring and controlling accelerator
physics. Despite similar problems at different sites these types of programs are seldom portable due to the low degree of modularity or encapsulation.
At BESSY dedicated API layers written in C++ have proven to be a useful means to hide implementation details: An event-driven interface to a
graphics server allows one to write programs with a graphical user interface on a windowing system (now: X11/Motif) without detailed knowledge of
that system. Device obijects on top of the equipmentaccess layer (now: CA/cdev) implement hardware specific control methods. This facilitates device
independent coding of measurement sequences.

I. Introduction

The ‘Berliner Elektronenspeicherring-Gesellschaft fir Synchrotronstrahlung m.b.H.” operates a 0.8 GeV storage ring
dedicated to the generation of synchrotron light in the VUV and soft X-ray region, BESSY 1.[1] The successor BESSY
II has been designed as a high brillance synchrotron light source in the VUV/XUYV region with 1.7 GeV nominal beam
energy. Sixteen DBA cells provide alternating dispersion-free straight sections of high and low horizontal beta function.
This machine is presently under construction at Berlin-Adlershof and scheduled to start routine operation in 1998.[2]

The replacement of the original control system of BESSY I [3], [4] was completed in 1993. [5] The architecture of the
new system embodies the ‘standard model’ of distributed control system design. Due to the restrictions imposed by the
replacement process it contains some peculiarities. As a novel feature full advantage of embedded controllers and the

properties of the CAN fieldbus is taken.[6], [7]

Apart from an attempt to save investments and know-how where appropriate there are no intrinsic boundary conditions
on the control system design for the new machine BESSY II. We decided not to proceed with our own development but
to base the system core on EPICS.[8] As part of the overall architecture the extensive use of the concept ‘embedded
controllers as CAN field bus nodes’ remains.[9]

II. Context of Application Development

The control system applications needed for the operation of BESSY II are coupled to the underlying control system core
by the ‘application programming interface’ (API) and the data model involved. That is sufficiently universal to be able
to profit from the experience and investments made during the project BESSY 1. A new restriction is that developments
now have to suit the environment of EPICS tools.

A. Experiences and Investments at BESSY 1

Concepts or solutions that have proven their usefulness are planned to be taken over at least partly.

« The data model at BESSY I is very simple. It requires polling, only synchronous ‘get’ and ‘put’ operations are im-
plemented. Therefore the callback mechanisms of ‘channel access’ (CA) provides a big increase in functionality. On
the other hand the API for the BESSY I equipment access is already based on exchanging messages with devices. This
abstraction level of ‘devices’ and their data structures is not provided by CA.

« The ‘graphical user interface’ (GUI) has been implemented by a graphical server encapsulating complete representational
aspects. It provides synoptic views, control panels and window hierarchies. Clients communicate with the graphical server
on an event driven API exclusively about requests concerning application variables.[4] The most versatile client is an

*eMail: birke@bessy.de, lange@bessy.de, mueller@bessy.de

648

X11/Motif

Optic Toolkit
DataBase

CA/cdev

Figure. 1. Application Program Support

interpreter that allows for any equipment access call. Simple tasks can be easily implemented in a scripting language
embedded in the representation description file of the graphical server—for the end user somewhat comparable to tcl/Tk
scripts.

« A multi purpose hardware driving utility mainly for backup/restore and magnet conditioning has been developed. It
implements device classes according to their data sets and meaningful driving methods. Handling of lists of devices, lists
of lists and machine data files (snapshots, references) are supported. For the needs of BESSY I macro programming of a
single application program that parses command input [10] has been sufficient (Fig. 3).

B. Framework of EPICS

« The cdev API [11] provides access to devices by using asynchronous operations and monitor callbacks (features present
in CA). At the same time cdev hides implementation details of the underlying package(s). cdev has been chosen by several
major laboratories (EPCS SOSH Workshop, CERN, 5/95) as the candidate for a common calling convention that promises
to facilitate sharing of accelerator control applications. Wherever possible applications will be based on the cdev APL

» With the EPICS extensions (medm, km, dp, alh...) the standard requirements for accelerator operation are covered
by sophisticated and high performance tools. However since they are solutions to specific problems on their own the
construction of a homogeneous and concise GUI is a challenge. With medm it is easy to build fancy screens but there is
no support for global variables that affect process variables (e.g. sector number/corresponding corrector power supplies).
Support for the construction of hierarchies is minimal (only by the related display button). Resolution of device names
into functional parts and the assignment of control panels corresponding to the appropriate device class is impossible.
There is no major problem in building synoptic displays with tcl/'Tk scripts and in launching the different EPICS tools
or medm screens graphically in the appropriate context. The main deficiency of this solution is the rapid decrease of
maintainability as the GUI evolves.

III. Conceptual Issues

Even if subsets of application programs fulfill the requirements for modularity there are important areas that are usually
hard to maintain (Fig. 1):

« Consistency of relatively static configuration data is quite easily provided by making it mandatory for the programmers
to use the database (possibly simply stored in central filesets). For BESSY II the reference data will be supplied by the

Oracle DBMS.
« Consistent results of model calculations or frequently used standard algorithms can be achieved by providing a cen-

trally maintained optics toolkit and high level software library. Optics calculations will be performed in the context of
Goemon [12], a C++ class library. Other utilities are to be developed as they are needed.

« A GUI based on the Motif toolkit requires a considerable amount of understanding. The success of tcl/Tk shows that
solutions that do not presume a knowledge of Motif are a reasonable goal. Furthermore even with the support of a

649

wi?lgei Set

Motif 1.2

event-handler

event protocol

user
10 events : requests

timer events

event-handler

cdeviOHandler : "callback-oriented
event-handling

execute_CB

Figure. 2. Graphic Client Event Flow

commercial GUI builder it takes a considerable effort to keep all aspects of the graphical representation localized. The
solution of designing an API free from presentational elements and providing network access to the graphic server of an
X-display is presented in this paper.

» Hardware control and conditioning programs usually have to deal with all the hardware peculiarities and exceptions. It
is described below how the treatment of these hardware specifics is encapsulated in a device object library.

IV. Graphical User Interfaces

The graphical server has been described elsewhere [4] in detail. The structure of this program can be summarized by three
blocks: graphical entities based on some windowing toolkit, dynamically created data objects that link presentational and
application variables and an event driven interface to the client programs (Fig. 2).

As a result of developments carried out by an external company the presentational layer of the graphical server is now
constructed with Motif widgets (formerly InterViews). This improves dramatically the potentialities of this tool: external

650

[machine |

reference

states

snapshot

files
Bipolar PS AC PS Switched S Storage Ring RF PA Booater RF PA

Data Data Dats Dats Outs
Mathads Methoda Methods Methods Methods
Bipolar PS Type 1 || Bipciar PS Type 2
Osta Data
Methods Methoda

Figure. 3. Sketch of Device Object Environment

widgets are easily introduced and control of specific behaviour is possible with the mechanisms of Motif resource handling.
To this is now added the possibility to switch between different presentational entities according to the content in the
actual representation description file (form). The forms are requested and evaluated by the graphical server at run time —
a feature already present in the previous version of the server .[4] Clients of the graphic server are classically event driven
and relatively simply structured. The API calls allow the building of a connection to the server that initiates transfer of
application variable data structures and mapping of the window(s). Code is executed according to the incoming events,
results are reported by generating events. All client events are grouped into the basic types:

« elementary connection handling (sanity of communication objects)
« user requests (interaction with the GUI)

« update reports (results, changes)

o cdev callbacks (frequently simply converted to update reports)

With this API application programmers can take advantage of a powerful GUI with literally no idea about Motif, as
long as the widget resources are centrally maintained. This is in contrast to (professional) Motif GUI builders or other
toolkits where at least the Motif architecture has to be known to the end user. The generic client of the graphical server
named action language interpreter [4] is presently adapted to the new EPICS environment by implementing the full cdev
functionality. It is planned to merge the advantages of GUI elements generated by the graphic server and the generic
client programmed with forms, with the fancy screens easily produced and modified by medm to an operator interface of
high functionality. The former will provide synoptic views and flexible window hierarchies, embed the different medm
screens and launch the other tools (km, dp, ...) with the proper parameters.

V. Device Objects

Originally this tool was developed from the need to write an ‘intelligent’ store-and- load utility for snapshot files that
performs conditioning, state modifications of devices etc. According to experience running programs based on the plain
equipment access API, with otherwise nicely structured code, are frequently ruined by the exception handling of specific
devices. Device objects have been created that adress these problems. They consist of device data sets (status, set point,
read back...) and control methods. These methods perform not only the downloading of values or commands, but also
complex operations: checks of task success, attempts to put the device into a proper state, possibly the untertaking of
repair or surveillance operations. More complex device objects are constructed from simpler objects through inheritance.
Collections of these device objects form nested lists. We plan to implement specific lists (e.g. ‘bump’) inherited from

651

the base list. Devices in these lists are not simply controlled sequentially but ‘simultaneously’ in ‘small steps’. Action
is only performed when all the devices in the list are in a proper state. Today we find similar data structures elsewhere
in the EPICS environment: the data sets and lists correspond to the cdev device attributes and compound devices. The
principal application ‘backup/restore’ could be implemented by BURT tasks embedded in shell scripts. The device-
specific driving methods still offer additional functionality to the application programmers that cannot be implemented in
a site- independent data handling layer like cdev. With the API to the library of device objects we plan to ease the coding
of measurement and correction programs and enhance maintainability at the same time.

VI. Summary

The rapid installation of the EPICS tools provides immediately basic functionalities for remote control and surveillance
of the connected pieces of equipment. Saving of manpower is invested into the development of tools that improve
modularity. The graphic server provides a reasonable balance between coding simplicity, representational flexibility,
performance power and demands on system resources. It shields the application programmers from the painful task
of learning Motif. Specific hardware control methods and device failure condition handling is encapsulated within the
library of device objects . The simple and uniform API will enable the programmer to write conditioning or measurement
programs without knowing the hardware specifics.

References

[1] S. Bernstorff et. al., Physica Scripta, 36, 15 (1987)

[2] E. Jaeschke for the BESSY II design team, Conference Record of the 1995 IEEE Particle Accelerator Conference,
Dallas, to be published

[3]1 G.v.Egan-Krieger, R. Miiller, Proceedings of the 2nd European Particle Accelerator Conference, Nice, pp. 872-874,

875-877 (1990)
[4] R.Miiller, H-D. Doll, I. J. Donasch, H. Marxen, H. Pause, Conference Record of the 1991 IEEE Particle Accelerator

Conference, San Francisco, pp. 1311-1313 (1991)

R. Miiller, Proceedings of the 3rd European Particle Accelerator Conference, Berlin, pp. 1167-1169 (1992)

[S] G.v.Egan-Krieger, R. Miiller, J. Rahn, Conference Record of the 1993 IEEE Particle Accelerator Conference,
Washington, pp. 1887-1889 (1993)

[6] Road Vehicles — Interchange of Digital Information - Controller Area Network (CAN) for High Speed Commum-
cation, Document Iso/DIS 11898, International Standardization Organization (1991)

[7] G.v.Egan-Krieger, T. Stein, J. Rahn, Nuclear Instruments & Methods in Physics Research A 352, pp. 204-206
(1994) '

[8] L. Dalesio, J. Hill, M. Kraimer, D. Murray, S. Hunt, M. Clausen, C. Watson, J. Dalesio, Nuclear Instruments &
Methods in Physics Research A 352, pp. 179-184 (1994)

[9]1 J.Bergl, B. Kuner, R. Lange, I. Miiller, R. Miiller, G. Pfeiffer, J. Rahn, H. Riidiger, these Proceedings (ICALEPCS
, Chicago, 1995)

[10] R. Lange, Diploma Thesis, FB 20, TU-Berlin, 1993

[11] J. Chen, W. Akers, G. Heyes, D. Wu, C. Watson, these Proceedings (ICALEPCS , Chicago, 1995)

[12] H. Nishimura, Nuclear Instruments & Methods in Physics Research A 352, pp. 379-382 (1994)

652

The Self-Describing Data Sets File Protocol and Toolkit!
M. Borland, L. Emery
Argonne National Laboratory; 9700 S. Cass Avenue; Argonne, I1 60439

Abstract

The Self-Describing Data Sets (SDDS) file protocol continues to be used extensively in commissioning
the Advanced Photon Source (APS) accelerator complex. The SDDS protocol has proved useful primarily
due to the existence of the SDDS Toolkit, a growng set of about 60 generic commandline programs that
read and/or write SDDS files. The SDDS Toolkit is also used extensively for simulation postprocessing,
giving physicists a single environment for experiment and simulation. With the Toolkit, new SDDS data
is displayed and subjected to complex processing without developing new programs. Data from EPICS,
laboratory instruments, simulation and other sources are easily integrated. Because the SDDS tools are
commandline-based, data processing scripts are readily written using the user’s preferred shell language.
Since users work within a UNIX shell rather than an application-specific shell or GUI, they may add SDDS-
compliant programs and scripts to their personal toolkits without restriction or complication. The SDDS
Toolkit has been run under UNIX on SUN 0S4, HP-UX, and LINUX. The application of SDDS to accel-
erator operation is being pursued using Tcl/Tk to provide a GUL

1 Self-Describing Data

As used in this paper, the concept of self-describing data starts from the recognition that when a scientist
thinks of data, he typically associates a number of attributes with it. Among these are

1. The name by which the data is known.

2. The units of the data, if any.

3. The meaning of the data (i.e., a description).

4. A mathematical symbol to represent the data, if appropriate.

5. The type of data (e.g., floating-point, integer, or character).
A self-describing file protocol (SDFP) should incorporate these attributes automatically. Further, the user
of self-describing data obtains the data by name. That is, unlike traditional text and unformatted data, SDFP
does not require the user to know, for example, the column of a table in which a certain quantity appears.

This is a crucial feature of the self-describing data concept, since it enables one to construct generic
programs that can perform similar operations in several applications. A good example would be a graphics
program that plotted data by name, rather than being written specifically for a single application. (Compare
this with the current state in accelerator physics, where many similar simulation codes have their own
custom-made graphics packages.)

For the purpose of discussion, assume that the data can be meaningfully organized into a single table.
This table might, for example, contain various quantities such as position, Twiss parameters, element name,
etc. Any program compliant with the SDFP in which the data was written would be able to access the
columns of this table without regard as to how the data was organized. The program would access the data
by name, using routines supplied by the creator of the SDFP. If the program needed only certain columns
of data (e.g., position and horizontal beta function) it would access only those columns. The presence of
additional columns of data (e.g., dispersion), would be irrelevant. Furthermore, the program would not need
to know the source of the data ; it could be from any source, including direct user input into a file, output
from any compliant simulation code, or measurement on a real accelerator.

I'Work supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

653

There are many accelerator codes that perform comparable computations and produce comparable output
in dissimilar formats. If all of these codes employed the same SDFP for their output, users and programs
could access data without regard for the code that generated it. Post-processing or multistage simulation
would be possible without custom integration of programs. That is, programs would not need to be custom
designed to provide output to each other in order to work well together. This would happen automatically
through the SDFP mechanism. This would allow users to combine programs in ways that were not planned
by the creators of the programs.

The only constraint would be that the codes used the appropriate names for quantities. In practice, this
restriction can be reduced by providing a name translation table. Programs can also be designed to request
data under several different but equivalent names, e.g., “betax” and “betah” for the horizontal beta function.

Another significant advantage of using an SDFP is the possibility of making program “toolkits.” We
have already noted that using an SDFP allows programs to read data from many sources. If a program
is created that both reads and writes data in the same SDFP, then this program may potentially be used
to alter data “upstream” of any other program that reads the SDFP. If many programs exist that fulfill
this requirement, then these programs can be employed in nearly arbitrary sequences to process data. The
usefulness of each program is vastly increased by the possibility of using it as part of such a sequence. Such
a set of programs comprises a toolkit, taking advantage of the SDFP to virtually guarantee that any member
program will provide readable data to any other member program.

2 The SDDS File Protocol

The principles elucidated in the previous section have been implemented in the Self-Describing Data Set
(SDDS) protocol, developed at APS. Any SDFP implementation must make certain assumptions about what
type of data will be stored and how it will be arranged. These assumptions comprise the data model for the
protocol.

An SDDS file consists of a header section and a data section. The header section declares that the file
is an SDDS file and which SDDS version it is in. It further defines zero or more data elements that together
constitute a data structure. The SDDS model organizes the data section into a series of “data pages,” each of
which is an instance of the data structure defined in the header. That is, each page of any file must contain
the same elements but may contain different specific data. For example, each page could contain the Twiss
parameters for a different accelerator or for a different tuning of the same accelerator.

Within each page, the following classes of data are recognized:

1. Parameter data, consisting of single values that may either be fixed throughout the file or vary from
page to page.

2. Tabular data, consisting of an arbitrary number of rows of mixed-type data. The data in the table
is referred to by the name of the column. Any number of columns may be defined, but the same
columns are expected for each page of the file.

3. Array data, where each element is of fixed but arbitrary dimension (i.e., an arbitrary number of array
indices is allowed). Each array is accessed separately, by name, but may be placed in a group with
other arrays. The size of an array may vary from page to page. (Note that a parameter is essentially
an array containing a single value, but it has simplified access from within a program compared to an
array.)

Any element of these data classes may have one of the following C-language data types: float, double,
short, long, char, and char *. These are, respectively, singleand double-precision floating point, short
and long integers, single characters, and character strings. All of these types may be mixed in the tabular
data section, but each column must contain data of fixed type. SDDS has no restrictions on the numbers of
each type of element, on the length of the tabular data, on the dimension of arrays, or on the size of arrays.

654

To continue the Twiss parameters example, one might create an SDDS file containing:

1. Parameters: The name of the lattice, the tunes, the chromaticities, the acceptances, etc.
2. Columns: The element name, the position, the Twiss parameters, apertures, etc.
3. Arrays: The response matrix, matrices for tune and chromaticity adjustment, etc.

While it is possible to design a self-describing file protocol that is more general than SDDS, we have
found that SDDS allows us to conveniently store almost any data. At worst, the user may need to store
disparate data in different, parallel files; this actually has the advantage of making the data easier and faster
to access. When evaluating the desirability of a more flexible data model, it is important to recognize that
too much generality will adversely affect the ease of development, ease of use, and development time. The
complexity of highly general models may explain why they are not in wide-spread use.

Some examples of the types of data stored in SDDS at APS are: particle tracking input and output; Twiss
parameters and transfer matrices along an accelerator; beam loss data from tracking simulations; simulated
orbit/trajectory correction results and statistics; orbit/trajectory data from the APS accelerators; simulated
of cavity fields; backup/restore files for the APS accelerators; archival data for the APS accelerators; video
images and other density maps; data transferred from digital oscilloscopes and spectrum analyzers.

Of course, each of these types of data could have been stored in other types of files. What is new is that
SDDS allows the user to store all of these types of data in the same type of file and to use the same set of
tools with all of them. For example, the same program that plots beta functions versus position can also be
used to plot archived oscilloscope signals versus time, or to make scatter plots of simulation tracking data.
Similarly, the same program that does FFTs of simulation tracking data from a simulation can do FFTs of
turn-by-turn BPM readings from the APS storage ring. These FFTs, of course, would be plotted by the
same program as all the other data.

Another advantage of SDDS is that the data may be either ASCII or unformatted (i.e., “binary”). The
SDDS header is in ASCII and has a familiar namelist format. It is a simple matter to create an SDDS
file using print statements within a program, giving immediate access to a range of SDDS tools (see the
next section). The SDDS header also has features to make it easy to convert existing text data into SDDS
protocol; in many cases, one simply creates a header and attaches it to the top of the file. We have found
that these features were extremely important in helping users to switch from text printouts and other custom
formats to SDDS. As noted above, SDDS incorporates a protocol and version identification string as part of
the header. This allows immediate detection of whether a given file is in SDDS protocol, and what version
of the protocol it is using. The SDDS library routines are configured to allow reading of any SDDS version,
so that an SDDS data file never becomes obsolete. This permits upgrades of the protocol itself without

disrupting users.

3 The SDDS Toolkit

The SDFP concept is a break with the traditional way that accelerator physicists store data. A further break
is the introduction of the toolkit concept for data processing. As described above, a toolkit is group of inde-
pendent but cooperative commandline programs. Traditionally, data processing has involved writing single-
or few-purpose programs that use data from a single source (e.g., a particular simulation or experiment).
This is in spite of the fact that the operations involved in different data processing applications are often
essentially identical except for the specific data involved. With the use of an SDFP, it makes more sense to
write generic programs that are not specific to experiments or simulations. This is because an SDFP allows
one to access data by name, which permits symbolic specification of operations. The simplest example
conceptually is graphics, as described briefly in the previous section; there is no good reason that a single
graphics program cannot be used for almost all of the codes and data employed in accelerator physics. (In
fact, there are several simulation codes in use at APS that use only SDDS files [1].)

655

While toolkit programs can be shared by users, development is decentralized. Since the only requirement
for a toolkit program is that it read or write SDDS files, anyone may make a contribution without any
negative impact on the rest of the toolkit. This is an advantage over “all- in-one” packages, which force
the user to import his data into a single program and perform all operations within a centrally-controlled
environment. In contrast, toolKit programs are combined through use of the local command shell and through
command scripts [2]. SDDS-compliant programs automatically work together, with little or no planning
on the part of code developers. To date, the authors know of nine individuals at APS who have developed
SDDS- compliant programs.

The SDDS ToolKkit is a growing group of about 60 programs that uses SDDS files. Most of the programs
both accept SDDS input and produce SDDS output. The following sections provide a brief description of a
number of the programs, grouped by functional type. Several programs are given more detailed descriptions.
The reader may note that most of the programs process column data only, producing either new columns or
parameters that reflect the processing. This is an indication of the extent to which this single feature of the
SDDS data model serves almost all the cases we have encountered.

The reader is referred to our companion paper [2] for a list of some of the APS commissioning data that
has been processed using the SDDS Toolkit and examples of how the Toolkit programs are coordinated.
Extensive hypertext manuals are available with the SDDS distribution package for the Toolkit itself [3] and
the SDDS-compliant EPICS programs [4]. A tutorial introduction with an emphasis on EPICS applications

is available in [5].

4 SDDS Toolkit Programs

The intention is of this section is to provide an overview of some of the SDDS Toolkit programs that are
presently available. For most programs, a brief and usually very incomplete description is given. For the
less obvious programs, a brief example is given. A few of the most heavily-used programs are given long
descriptions.

4.1 Data Analysis Tools

e sddschanges: Analyzes changes in column data from page to page in a file, relative to a reference file
or the first page. An example application is computing changes in waveform data over time relative
to an initial waveform.

e sddscorrelate: Computes correlation coefficients and correlation significance among multiple columns
of data. An example application is searching for possible causal relations among many columns of
time-series data.

e sddsderiv, sddsinteg: Numerical differentiation or integration of multiple data columns versus a
single column.

e sddsdigfilter, sddsfdfilter: Perform time- and frequency-domain digital filtering.

e sddsenvelope: Analyzes column data across pages to find minima, maxima, averages, standard-
deviations, etc. on a row-by-row basis. An example application would be finding the envelope and
average of a repeatedly-sampled waveform.

e sddsexpfit, sddsgfit: Exponential fit or Gaussian fit to column data.

e sddsfft: Computes fast Fourier transforms and power spectral densities of column data Will provide
real and imaginary parts, magnitudes and phases.

e sddshist, sddshist2d: One- and two-dimensional histograms and simple statistics.

e sddsinterp: Does arbitrary-order polynomial interpolation of multiple data columns as a function
of a single column.

656

sddsoutlier: Eliminates statistical outliers from data using, for example, a limit on the number of

- standard deviations by which a point may differ from the mean of the group.

e sddspeakfind: Finds values of many columns at locations of peaks in a single column.
o sddspfit: Does arbitrary order polynomial fits to column data, including error propagation and

4.2

adaptive fitting.

sddsprocess: A generic data processing program that, among other features, permits: defining
new tabular and parameter data in terms of existing data using user-specified expressions; printing,
scanning, editing, and subprocess execution (with output capture) of string data; units conversion;
selection of tabular data rows by multiple numerical windows and wildcard matching, with user-
specified logic among selection criteria; creation of parameters based on any of 29 types of analyses

of tabular data.

The tabular data analyses include statistics, waveform and pulse parameters and linear fit parame-
ters. Among the statistics are arithmetic average, rms, standard deviation, median, minimum and
maximum. Waveform analyses include amplitude, baseline, risetime and falltime. Analyses may be
invoked for an arbitrary number of data columns using wildcards, with parameter names being con-
structed from a user-supplied template. Many analyses support weighting and winnowing based on
data from secondary columns.

sddspseudoinverse: Reads the numerical tabular data as though it was a matrix and outputs the
SVD inverse. The tabular data need not form a square matrix. Options allow one to adjust the number
of singular values selected. This program is used to calculate gain matrices in a number of generalized
feedback applications.

sddssmooth: Smooths columns of data using multipass nearest-neighbor averaging and optional
“despiking.” Often used in concert with sddspeakfind to give reliable peak frequencies from noisy
spectra.

sddsslopes: Calculates the slopes and intercepts of selected columns using another column as
independent variable. When applied to data logged at intervals using the time data column as
the independent variable, this program directly produces time trends. This program has also been
used extensively in calculating linear responses of systems to actuators. As such, sddsslopes and
sddspseudoinverse are often used to analyze experimental data to produce a gain matrix for feed-

back.

Data Manipulation Tools

sddsbreak: Breaks data pages into new, separate pages based on changes in column data and other
criteria. For example, sddsbreak can analyze time-series data to find probable time gaps and make
a separate page for each contiguous section.

sddscollapse: Collapses a data set into a single data page by deleting the tabular data and turning
the parameters into columns. This is an important tool in data collation operations. Typically, one
processes multipage tabular data to produce parameters for each page (e.g., statistics for several
columns), then collapses the result to obtain a single page of tabular data. Several such data sets
can be combined using sddscombine, which puts one formally in the same position as when one
started. This program is often used with sddsprocess in data reduction cases where thousands or
even millions of data points must be reduced to a simple result.

sddscombine: Combines any number of data sets into a single data set by adding data from each
successive data set to a newly-created data set.

sddsconvert: Allows conversion of a data set between binary and ASCII, with optional deletion and
renaming of columns, arrays and parameters. -

657

S S e

43

44

sddssort: Sorts the tabular data section of a data set by the values in any number of named columns
and optionally eliminates duplicate rows.

sddstranspose: Reads the numerical tabular data as though it was a matrix and outputs the transpose.
Applying sddstranpose again to the output reproduces the original file. This program is used often to
convert multi-column one-row SDDS ‘data sets, obtained from sddscollapse, say, into two-column
multi-row data sets (an extra string data column comes from the original column names), which are
then suitable for plotting. For example, sddsprocess and sddstranspose could be used to take a
file with 360 columns of beam- position-monitor samples and create a plot of rms position variation
vs BPM name.

sddsxref: Creates a new data set by adding selected rows from one data set to another data set. The
rows are selected by matching the string or numeric values in a specified column that is present in
both of two pre-existing data sets. Will also transfer parameter and array data between files.

‘Graphics Tools

sddscontour: Makes contour and color-map plots from a data column interpreted as a matrix, or
from many data columns. Optionally does FFT- based interpolation and filtering. Uses the same
device drivers as sddsplot.

sddsplot: A very powerful generic device-independent graphics program for plotting tabular and
parameter data. The program is equally capable of “quick-and-dirty” and publication-quality plots.
Among the supported devices are X-windows, color and black-and-white Postscript, Tektronix, REGIS,
and various PC graphics cards. While the program is commandline-driven, it brings up a2 GUI under
X-windows. (Support for graphics using such old methods as the Tektronix and REGIS languages
may seem unimportant; however it does enable one to get graphical displays using a wide variety of
terminal emulators running on personal computers.) sddsplot was designed to handle and organize
large amounts of data. Any number of data elements may be plotted from any number of files. The
data to be plotted from any file is simply named on the commandline, with optional wildcarding. The
program organizes data into a potentially unlimited number of “panels” on a potentially unlimited
number of logical output pages; in this context, a panel is a stand-alone graph containing zero or
more data points from any number of sources and occupying all or part of a page. When desired,
grouping of data into panels may be specified in numerous ways, such as grouping columns of data
by tag parameter values stored in the data files, or grouping columns of data from many different
files by the name of the data. For X-windows, a movie mode is available that displays pages in rapid
succession. Figure 1 shows an example of a page from a movie made from tracking data for the APS
booster; the overlayed histograms are made with sddshist. Figure 2 shows an example of plotting
Twiss parameters using sddsplot.

Plotting types include lines, symbols, error bars, dots, impulses or bars and arrows; things like color
and symbol type may be varied automatically by the program to distinguish different data, or these
attributes may be specified explicitly. When plotting lines, sddsplot can optionally analyze data
for gaps and break the line at appropriate points. Data may be filtered and subjected to matching
operations based on data in other columns or parameters, as well as sparsed and randomly sampled.
Title, label, and legend strings for each set of data may be extracted from the corresponding SDDS

file.

Miscellaneous Tools

File Protocol Convertors: Programs are available to convert from the following into SDDS: Hewlett-
Packard CITI; Hewlett-Packard HP54542 scope format; Spiricon Laser Beam Analyzer and others.

658

0.2 ' ']
0.5] .
0.1]]
? B
E 0.0 j E 0.0L)
x > -0.1L |
0.5]
-0.2f]
1.5]
1.0 i
0.5 |
& 00 1 BOOSTER PHASE SPACE
©-0.5]
-1.0]
-1.5

Figure 1: A frame from a movie of APS booster 6-D phase-space tracking simulation, with a deliberate
mismatch.

Programs are available to convert SDDS to the following: Mathematica?; Excel and Wingz spread-

. sheets and others. ‘

e sddsprintout: Makes customized printouts from SDDS data. This means that while an SDDS file
may contain dozens or even thousands of parameters and columns, a printout can be easily made that
contains just the data of interest.

e sdds2stream: Takes column or parameter data from a list of SDDS data sets and delivers it to the
standard output as a stream of values. Often used to get data into a shell variable in csh or tclsh.

e sddsquery: Prints 2 summary of the SDDS header for a data set, or delivers this data as a new SDDS

file.

5 SDDS-Compliant EPICS Tools

The control system at APS is the Experimental Physics and Industrial Control System (EPICS) [6]. A toolkit
approach is adopted in designing workstation applications that communicate with EPICS. In order to take
advantage of the existing SDDS toolkit, those applications that exchange data between EPICS and data files
use the SDDS file protocol.

The tools listed below are very general. They do not assume that an accelerator is being controlled.
These tools can easily be adapted to non- EPICS control systems by replacing the EPICS channel access
libray calls in the source codes with appropriate substitutes. A set of detailed case studies of the use of

some of these tools is available in [2].

2Mathematica is a registered trademark of Wolfram Research, Inc.

659

By By 10xm, (m)

51

5.2

1 T T

T i T
- o a2} - <+ 2] N - Bx
30 $§, 8 T g §¢
- N] < 0 L3 " - -
a o Qo o Q.
o1, ,
o, N ﬁy
25| {--="-=
10%n,
201 IR
151 i
10L i
5L i
OL i
| ! | l ! |

Figure 2: Twiss parameters for one sector of the APS ring.

Configuration Save and Restore Tools

burtrb, burtwb (Back-Up and Restore Tool): These programs perform EPICS save and restore
operations, reading data from and writing data to the control system. SDDS protocol is used both for
the “request file” (configuring a read operation) and the “snapshot file” (containing data from a read
operation or for a write operation). Because SDDS is used, a snapshot file can function as a request
file, as it contains all of the essential data from the request file. Information such as time stamp, user
ID and operator comments is stored in the file as SDDS parameters; additional parameters may be
added at will without side effects. Operations such as selection of subsets and comparison of snapshots
are performed using various SDDS Toolkit programs, forming the basis for a save/compare/restore
facility [7].

toggle: Altemates between two sets of process variable values stored in snapshot files at a regular
interval. Example application: Altemate between two configurations of an accelerator for debugging
accelerator performance.

Data Collecting Tools

sddsmonitor, sddsstatmon, sddsvmonitor, sddswmonitor: These programs provide various types
of data logging into SDDS files. Each is configured by one or more SDDS files containing names of
process variables (PVs) to read. The various versions are, respectively, for logging values for simple
lists of PVs; statistics for the same; values based on list multiplication and organized into vectors and
waveform PVs. The vector and waveform versions will accept input data for scalar logging as well,
thus partially duplicating the function of sddsmonitor. Normally, the programs log data at a fixed,
user-specified time interval. However, options are provided for event-based data logging. For all of

660

[[Loy R e 6 [g e

53

the programs, data taking may be controlled by a parent process using messages in the standard input
stream. All except sddsstatmon accept additional SDDS input specifying test limits for conditional
datalogging. For sddsmonitor, data may be stored in a circular buffer and written to disk only when
user-defined trigger or glitch events are detected.

sddssnapshot: Reads values of process variables and writes them to a snapshot file. This program
differs from burtrb in that it may operate in a server mode in which a new file is written to a named
output file whenever the signal SIGUSR1 is received. An application would be taking successive

 sets of data triggered on certain events determined by another process, without remaking any channel

access connections.

sddsexperiment, sddsvexperiment: These programs provide for experiment execution and data
collection. The most basic usage involves variation of a setpoint in equal steps, with data gathering
for each setpoint. More sophisticated applications may involve variation of an arbitrary number of
setpoints on a multidimensional grid. Also supported are computation of setpoints from user- supplied
equations, allowing for nonlinear variation. Subprocess execution is supported to permit scripts to be
run in coordination with setpoint variation and data gathering; these scripts may acquire specialized
types of data (e.g. video images) or perform specialized tasks (e.g. adjusting a motorized attenuator
to obtain a specified power level). Data gathering includes optional computation of averages and error
bars at each measurement point. (The two variants of the program differ in the mechanism by which
the measured process variable names are supplied and the way the data is organized in the output

file.)

Control Tools

sddcontrollaw: This program performs simple feedback on process variables. Basically, a set of
control process variables is used to regulate to zero a set of readback process variables. Optionally,
the program can hold constant the initial values of the readback process variables. The values of the
control process variables (u,) applied at some iteration of the feedback are related to the values of the
readback process variables (x,) at the previous iteration through the matrix equation u, = uy—; — KX,,
a variant of the control law equation in control theory. An SDDS input file specifies the gain matrix
K and all the process variable names.

To make the control robust, a series of validity tests on process variable values are implemented by
means of an additional SDDS file containing the names of process variables and their corresponding
limit values. Feedback iterations proceed only when all of the test process variables are within the
specified range. When one of the tests fails, control is suspended (i.e. the control variable values are
untouched by the program) until all of the tests succeed.

Some of the applications have been: removing slow energy drifts in the linac, correction of linac
and most beamline trajectories, correction of positron accumulator ring and storage ring orbit, “slow”
feedback on storage ring gap voltage amplitude to compensate for beam loading and performing
complex experiments in association with sddsexperiment. The gain matrix X is usually determined
empirically with the use of sddsexperiment or sddsvexperiment (to determine parts of the response
matrix) and other SDDS tools (to invert the response matrix to obtain the gain matrix). The process
of determining the gain matrix and applying sddscontrollaw for the different systems of the APS
accelerators is essentially the same, only the names of process variables are changed.

squishPVs: This program provides for automated “knob tweaking.” It was originally written for
first-turn trajectory correction in the APS ring, but is of more general application. The name comes
from the way the program flattens out the trajectory. The program takes an SDDS input file giving

661

a series of actuator names and any number of readback names for each actuator. It then adjusts each
actuator in turn to minimize either the rms or mean-absolute-value of the corresponding readbacks.
While quite slow compared to the use of a response matrix and sddscontrollaw, squishPVs has
the advantage of being completely insensitive to, for example, magnet and beam-position-monitor
polarity errors.

6 Acknowledgements

The authors wish to acknowledge the following individuals for contributions to the SDDS toolkit and EPICS-
specific tools, either in the form of suggestions, bug discoveries, or contributed programs: J. Carwardine
(APS), Y. Chung (APS), K. Evans (APS), N. Karonis (FNAL), E. Lessner (APS), S. Milton (APS), G.
Rinehart (IPNS), C. Saunders (APS), M. White (APS).

References

[1] M. Borland, “A Self-Describing File Protocol for Simulation Integration and Shared Postprocessors,”
Proceedings of the 1995 Particle Accelerator Conference, May 1-5, 1995, Dallas, Texas (to be pub-

lished).

[2] M. Borland, L. Emery, N. Sereno, “Doing Accelerator Physics Using SDDS, UNIX, and EPICS,” these
proceedings.

[3] M. Borland, “User’s Guide for SDDS Toolkit Version 1.4,”
http://www.aps.anl.gov/asd/oag/manuals/SDDStoolkit/ SDDStoolkit.html .

[4] L. Emery, private communication.

[5] J. A. Carwardine, “An Introduction to Plant Monitoring Through the EPICS Control System,” these
proceedings.

[6] L. R. Dalesio, M. R. Kramer, A. J. Kozubal, “EPICS Architecture,” in ICALEPCS 1991, pp. 278-281.

[7] D. J. Ciarlette, R. Gerig, “Operational Experience from a Large EPICS-Based Accelerator Facility,”
these proceedings.

662

MIGRATING THE CERN PS CONTROL SYSTEM TO IBM
WORKSTATIONS

Nicolas de METZ-NOBLAT
PS Division, CERN, CH-1211 Geneva 23, Switzerland

ABSTRACT

The workstations used within the control system of the CERN PS accelerator complex are not produced any more.
We had therefore to review the software primary used as user interface and we made a port to IBM workstations.

We are also preparing the maintenance of this code for the next ten years with minimal staff. This implies a clear
separation between general computing facilities, control system developments, and operation.

In order to share our experience, we will try to summarize various aspects of this migration:

system installation principles used to speed-up error recovery time and reduce long-term maintenance costs,
problems resulting from the coexistence of two different platforms during migration,

software problems due to the platform and operating system changes,

hidden dependencies on a specific manufacturer.

1. INTRODUCTION

During the last five years, the PS Division has carried out a large project to renew the control system of the CERN
PS particle accelerator complex [Ref. 1 & 2].

This resulted in the introduction of a rather large number of UNIX workstations and X-terminals mainly used for the
daily operation and the exploitation of the CERN PS complex.

Our original systemused DEC workstations based on 32 bit MIPS microprocessors. The new generation of DEC
workstations is based on a new 64 bit chip and a new operating system. The amount of work required to port our
control software to this new generation was almost the same as that necessary to port it to any other UNIX
workstation. After detailed cost analysis, we decided on IBM RS/6000 workstations based on PowerPC chips and

running the ATIX operating system.

The introduction of a new generation of workstations is also a good time to review organizational details in order to
minimize the staff required for the long-term maintenance of such computing resources.

2. NETWORK TOPOLOGY [Fig. 1]

We have been introducing a large number of workstations (>100) and diskless front-end computers (>100), initially
to develop a new control system and then to operate and maintain it. The problem was to keep this maintainable.
We split the equipment into two different networks isolated by a router:

o An office network: This covers development and test equipment
¢ A control network: This concentrates the equipment needed for normal operation of the complex

Then we split this control network into various subnets, at present isolated by bridges:

e acentral control subnet on which we keep some critical services like central timing generator or databases,
e one subnet for each accelerator (or group of accelerators):

663

one for the proton and the ions LINACs,

one for the LEP Pre-Injector complex (LIL and EPA),

one for the PS Booster (PSB),

one for the CERN Proton-Synchrotron itself and its transfer lines (CPS).

We organized each subnet to still allow a minimum of operation from a local control room, even when disconnected
from the central control subnet. Diskless computers rely on a single file server located on the same subnet to recover

after a power-cut.

. SL/control network ; PS/control network
i Commpn PS/SL database
SL FDDI backbone Conuol Room
(Cemnl ‘rnmng SOS).
AN
7
CERN/public network
H CPS
@ FDDI backbone network ﬁ SEE s TR Local conirol soom £}
I, H S S B stations & accelerator?’
o N ' §\ Local server specific front-ends E
PCs PS offices and tests ¢ '
Unix workstations PSB
A m il
‘ Unix servers : N Local server
ISOLDE £ N
R TS 1 P LINAC 2&3
-* Novell server 5\ Local server /
1ear B
N F YMS server / W

Fig 1: The network topology

3. FILE SYSTEMS ORGANIZATION

We had to decide early on a well-structured file organization that could stay stable during the whole project.

We decided on the following organization:

e One file system per accelerator: This receives all programs required for the minimum operation and all software
specific to this accelerator, including software running in diskless front-ends.

o One file system for central services: This receives programs that are not critical for the minimum operation and
used for the control of more than one accelerator..

e One file system for the control software source repository: this receives sources of all the programs developed for
the purpose of the accelerator control. Its structure reflects the target file systems in order to ease long-term
software maintenance.

¢ One file system to receive libraries and associated include files for each different target. This file system also
receives specific programs required either to produce the applications or to maintain operational data.

¢ One file system to receive Word-Wide Web documentation used for on-line help.

The CERN central computing service furnishes other resources not used for normal operation:

¢ Home directories can be located on central servers,
e Public domain software must continue to be maintained centrally,
e Whenever possible, commercial products must also be centrally maintained.

664

4. MIGRATION STRATEGY

Before deciding on new UNIX workstations, we did a preliminary inventory of all our software and our dependence on
specific features. Nearly 30 different programmers had developed about 100 applications. Then, we ported a
significant application to various platforms and evaluated the constraints.

The next step was to start the porting with a small number of workstations and servers in order to prepare a
validation of almost all applications in a real context co-existing with the current environment {Ref. 3].

We had to minimize the staff required and interference with on-going developments and normal beam production. We
prepared an independent environment to receive sources and libraries and a clone of existing operational file systems.
This allowed us to prepare for the final software distribution and to execute applications in a realistic environment,
keeping the same data source database for software customizations such as program menus and equipment lists.

The next step (March 1996) will reverse the situation between old and new workstations in order to avoid the
simultaneous maintenance of two binaries for the same applications.

The final step will be to reduce the platform diversity in order to reduce system management complexity and to ease
new application development.

5. PROBLEMS ENCOUNTERED DURING THE MIGRATION

While developing our applications, we tried to avoid the use of manufacturer-specific extensions to standards and the
migration was a good occasion to verify this point.

We did not encounter any major problem while porting almost all the software to the new platform.

Some problems originated from librarys updates for such as standard Motif and X11, or from our own libraries. With
anew development environment on both platforms, it was possible to isolate and cleanly these problems.

Other problems were due to dependencies on the environment:

¢ Some programs were using specific fonts.

¢ Simultaneous use of various UNIX variant compatibility routines (Berkeley Software Distribution, System V
and POSIX) does not always mix properly.

Our front-ends already had a different byte order and most programs were already ready for such a change.

C compilers and system include files differ, but without any major incompatibility.

We tried to avoid as most as possible the use of Display Postscript extension, except for two applications.

One application used a specific external video input extension and multimedia libraries. We will need to adapt it
and hope that with current developments in the multimedia area some standards will be available for this field.

The migration itself was an occasion to locate small programming mistakes, or surprising limitations introduced by
the programmer. A typical example was the limitation to six characters of a host name!

We also had to prepare the future development environment. One example is that we had to decide on a new User
Interface Builder program.

6 OTHERS SYSTEM CONSIDERATIONS

We are trying to prepare long-term exploitation solutions:

e We try to use the same system installation procedures as other CERN central UNIX services with minimum
specific customization, in order to share experience and support.

e We prepare all critical computers for remote exploitation. This applies to servers and to front-ends.
Our network layout is clean, easy to understand and is organized to allow longer intervention delays on non-
critical equipment.

o We keep coherent contents within file systems and have automated backups.

665

7. CONCLUSION

This exercise of porting our control software was very positive. It was an occasion to evaluate in details our
dependencies, and to check its completeness. It demonstrated the ability of a UNIX system to maintain a large
amount of software written in C. However, it is very important to choose emerging standards and to avoid any

specific extensions to these.

During the next year we expect to reach a very clean and stable situation with workstations, servers and control
application software. That might open the way to some out-sourcing solutions of our problems as we have already
experienced with the system management of the LEAR control system.

ACKNOWLEDGMENTS

I would like to thank Michel Arruat, Franck di Maio, Serguei Moukhine, Orel Oleg and Fabien Perriollat for their
great help in achieving this work within the planned timetable. I would like also to thanks all applications
developers for their collaboration and the various people who have been testing the resulting environment.

REFERENCES

[1] F.Perriollat, Ch.Serre, “The new CERN PS control system, Overview and status”, ICALEPCS, Berlin,
Germany, October 18-23, 1993, Nucl. Instr. And Meth. A352 (1994) 86.

[2] R.Rausch, Ch.Serre (editors), "Common Control System for the CERN Accelerators”, Proceedings
ICALEPCS, Tsukuba, Japan, 11-15 November 1991, p.54-58
The PS and SL controls groups, "PS/SL Controls Consolidation Project”, Technical Report, CERN PS/91-
09(CO), CERN SL/91-12(CO), April 91.

[3] M.Boutheon, F.DiMaio, A.Pace, "General Man-Machine Interface used in Accelerator Controls; Some
Applications in CERN-PS Control System Rejuvenation", Proceedings ICALEPCS, Tsukuba, Japan, 11-15
November 1991, p.452-455

666

S —— B TSI 4T e y e S Y

Migrating From X-Window Workstations To Windows NT PCs

David E. EISERT
Synchrotron Radiation Center, University of Wisconsin-Madison, 3731 Schneider Drive, Stoughton, WI 53589-3097,

USA

The operator interface for the synchrotron storage ring Aladdin has evolved many times over the years to keep
pace with new technology. Recently we have started a migration from VaxStation 3100s running VAX/VMS to
PC clones running Windows NT. Although we could upgrade the existing workstations with the latest model, there
are other reasons to change operating systems. The most important reason is the ability to integrate commercial PC
applications such as LabView from National Instruments into the existing control system. In addition, the software
development packages available under Windows NT are integrated more closely with the windowing environment
than their VAX/VMS counterparts. Some of the advantages and disadvantages we have uncovered in porting existing
code and in integrating commercial PC applications are discussed.

1. INTRODUCTION

The first version of the operator interface for the Aladdin control systems was implemented on color graphics
terminals and a minicomputer [1]. As we acquired graphics workstations the interface remained largely unchanged for
several reasons. Firstly, the operation staff were familiar with the existing interface and were reluctant to lose some
of the features of our non-standard graphical user interface (GUI). Another problem developed due to the evolution of
GUI environments; it was easier not to use any of the new features than to keep up with the fast changes in these
environments. In addition, when we made our last major revision of the operator interface code, the workstations

lacked graphical software development tools.

Over the years we have made some improvements to our operator interface software to increase efficiency when
porting to a new GUI environment. The software has been consolidated from many medium sized applications to one
large application and five small applications. Only two applications utilize the graphical display, the other
applications perform various monitoring and file recording tasks in the background. The original software was
written in FORTRAN and it was difficult to interface with GUI environments written in C. During the migration to
X Windows the original FORTRAN code was rewritten in C. In addition, the parts of the software that use the
display have been divided from sections that perform calculations and I/O operations.

There are several reasons to move from X Windows to Windows NT. Our staff has almost entirely converted over
from the VAX/VMS systems to the PC platform. They wanted the ability to take work home and use the same
computers at home as they do at work. They also wanted access to the many user-friendly PC applications.
Afterwards they noticed that some of the PC applications would be very useful for machine studies and data
manipulation. Another reason to switch platforms is the cost of color workstations compared to PC clones. The
differences in the initial purchase price are narrowing rapidly but workstations will always be more expensive. The
workstations also require a service contract since we can not afford to purchase spare workstations. Spare PC clones
are available in emergency situations from almost every desktop and spare parts are available from local retailers.

2. DEVELOPMENT TOOLS

VAX/VMS has been a leading platform for software development for many years. The compilers have always been
regarded as generating extremely efficient code. Unfortunately the development tools available under VMS never
made the transition to the GUI environment. Software development tools always use a command line environment
with each tool acting independently of the others. Compiler vendors created the Integrated Development Environment
(IDE) under Windows/Windows NT. Many Windows compilers do not require the use of the IDE environment and at
first people familiar with a command line environment will probably avoid using it. Eventually it becomes apparent
that there are many advantages to working in an environment where all the development tools work together in one

package.

667

2.1 Compilers

C++ compilers have been available for a long time on the PC platform but have only recently been offered by
DEC. VAX C did not implement very strict type checking and allowed many practices that generate warning
messages in current C++ compilers. More recently we started using the DEC C++ compiler but very few of the
warning conditions were corrected since it has an option to implement the VAX C style type checking. When
moving to a PC C++ compiler much of the type checking had to be turned off to avoid hundreds of warning

messages.

Fortunately the PC C++ compilers have many options when it comes to warning messages, errors and
optimizations. These options could be controlled by command line style switches but the IDE makes setting these
switches easy through the use of a dialog box. Due to the IDE the whole development environment has many more
options than is typically available with command line environments. In addition, GUI code normally has very large
include files but PC C++ compilers precompile these include files. The next time a module is compiled, the include

files do not have to be processed.

2.2 Debuggers

There are basically two stages of development for debugging software. During the first stage of debugging one
would build the code with all the information needed for a source code debugger. The debugger is normally invoked
and the code will run normally unless an error is encountered. When an error is encountered the debugger halts the
execution of the code and enters the debugger. After the code is initially debugged a second release version of the code
is ordinarily produced. The release version does not have all the information needed for a source level debugger. When
a bug is encountered the system may produce one of several results. The worst case is that the system crashes
without returning any information about the problem. In the best case only the program terminates and enough
information is returned before it terminates to identify and correct the problem.

Both systems are fairly comparable when running under a debugger. The VAX/VMS Debugger supports a GUI-
based debugger but lacks many features available in Windows NT. The VAX/VMS Debugger is primarily a
command line debugger with an add on GUI interface. As a result the Windows NT version is a better match with the
GUI interface. For example, the executing code is highlighted in the source code editor rather than just displayed in a
special debugger window. The Windows NT version also allows the debugger to be invoked after an error is
encountered. Normally the debugger has to be invoked before the program is started but under NT if an error is
encountered the debugger can be started at the point the error occurred.

The early MS-DOS/Windows operating system lacked any memory protection from the released version of an
application program. Normally every programming error encountered would produce an entire system crash with
little information about the cause of the error. Windows NT has an extensive number of protection mechanisms for
the operating system. Earlier windows code that took advantage of the lack of memory protection will fail under
Windows NT. When a program running under Windows NT encounters a programming error a dialog box pops up
explaining there was a fatal error. Some information on the location of the error can be obtained from the
information reported in the dialog box. Unfortunately the Microsoft Visual C++ compiler normally does not include
procedure names in the executable image, therefore only the address of the error can be reported. It should be noted
that we have pever crashed the Windows NT operating system due to an application programming error. Windows
NT is able to recover all resources used by the errant program including any networking resources. VAX/VMS
systems produce a program stack dump on fatal program errors with the procedure names and specific address
information. VAX/VMS provides a slight advantage over Windows NT by providing the names of the procedures

where the error occurred.

2.3 Object Editors

Early efforts to develop GUI code encountered difficulties when laying out the elements of a dialog box. The origin
pixel coordinates and pixel dimensions of the elements had to be entered by hand in a text file. Later development
tools were supplied that allowed graphical editing of the elements in dialog boxes. Both X Windows and Windows
NT have similar utilities for creating and editing the GUI visual elements. Although the Windows NT GUI editor is
built into the development package IDE interface, the X Windows editor is available only as a separate tool.

2.3 Other Tools

Some other tools that are useful during the software development process include intelligent program editors,
software version control and code performance profilers. The early editors supplied basic text editing features such as

668

text entry, navigation through text files, text searching and replacement. Later versions like the VAX/VMS
Language Sensitive Editor included enhancements for checking code syntax prior to compilation. Editors available
under Windows NT improves upon syntax checking with syntax highlighting. Code components like constants, code
statements and comments are highlighted in different colors for easy identification. Under VAX/VMS we used the
inherent software version control supplied by the VMS file system. Since VMS maintained revisions of source
modules until they are explicitly purged, older versions could be easily recovered by deleting the more recent
versions. At present the Windows NT file system does not support multiple file versions so we had to purchase a
software version control utility. The version control software offered many more features than we required but some
of these features prove to be quite useful. Rather than just keeping the last few revisions, the software version
control keeps all version and can restore any previous version upon request. Although we had access to the
VAX/VMS code profiler, we never used it because of the extra effort required. The Windows NT code profiler is
enabled with a simple dialog check box. The ease of use makes the tool much more valuable in determining

potential efficiency problems.
3. PORTING CODE

Most of our code compiled under Windows NT without problems but there were a few areas that required some
effort to port. These include cursor control, graphical drawing and the network interface. At present we have ported
approximately half of the operator interface code to Windows NT. Since our code relies on some non-standard GUI
features we had to investigate ways to bypass some of the Windows NT GUI features. Fortunately Windows NT has
available all the hooks needed by our software and after a little experimenting we were able to accomplish our tasks.
In addition, we had previously used our own network protocol for communication but it was simpler to use UDP/IP
that is supported by Windows NT than to add our network protocol to Windows NT.

3.1 Existing Code

Many facilities use external knob boxes or GUI-based sliders for virtual analog knob support under their software.
We have used another method that I have not seen at any other facility. Our implementation uses the track ball that
is normally used for cursor control in GUI environments. This is accomplish by confining the cursor to the main
window, hiding the cursor from view and then placing the hidden cursor in the center of the screen. Every tenth of a
second the cursor position is checked and changes in positions are translated to increments in the analog control. If
the hidden cursor gets too close to a screen edge, the cursor is repositioned to the center of the screen. Standard GUI
style guidelines discourage the “grabbing” of the cursor but all GUIs seem to provide hooks for these functions. Both
X Windows and Windows NT allow the cursor to be bound to a particular window and to be hidden from view. One
potential problem with this method involves child windows gaining control of the cursor when the hidden cursor is
positioned over them. Our software does not use any child windows so the problem is avoided.

Our user interface appears much as it did when we used color graphic terminals. We use a blank graphic window to
draw all the text with only a few lines highlighting the areas around the text. This simple format allows for very fast
drawing requiring only a fraction of a second to draw a whole screen. Cursor handling becomes a little more
complicated because all mouse events inside the window have to be interpreted by the program without the normal
assistance provided by the GUI environment. This format also allows for very efficient updates of the device readings
due to the minimal overhead imposed by directly drawing the text. Many of these speed enhancements were needed
for the older, slower workstations but they have become less important for newer systems.

Under VAX/VMS we developed our own network protocol because it was simpler than writing a complete
implementation of a standard network protocol on our VME systems. It is not as easy to implement a new network
protocol under Windows NT. It appears that the protocols have to be installed as part of the protocol layer of the
driver for the ethernet adapter. We did not want to write any code for Windows NT that would have to be installed as
part of the operating system. So we had to approach the problem from the VME system end and write an
implementation of UDP/IP for the VME systems [2]. Once the UDP/IP implementation was completed for the
VME systems it was only the simple matter of using WinSock for Windows NT. WinSock is an extension of the

standard UNIX Berkeley Sockets implemented under Windows NT.

3.2 Commercial Libraries

Our existing code contains some two-dimensional plotting routines needed to display plots of storage ring devices
versus time. This plotting code would draw the plot in a empty window using only the text and line drawing
functions of the GUI. In porting the code to Windows NT it became apparent that there are several low cost plotting
packages that could be used for this function. Under VAX/VMS the plotting packages were so expensive we

669

implemented our own simple plotting routines. By using these inexpensive packages we can create many styles of
plots that we could not produce with our own simple plotting software.

4, COMMERCIAL SOFTWARE

One of the main disadvantages of using VAX/VMS systems is the lack of inexpensive commercial software
packages. DEC did develop a licensing program that allowed educational institutions access to their code for a small
annual fee. Unfortunately this did not reduce the cost of software from other commercial developers. For Windows
NT we can purchase many commercial applications at a reduced educational price.

4.1 LabView

LabView is a commercial graphical data acquisition and control program developed by National Instruments that
runs under many operating systems including Windows NT. The program offers the graphical control displays that
are now common for GUI environments. It also has a graphical programming environment that does not require
knowledge of traditional programming languages. This graphical programming environment appeals to our scientific
and engineering staff as a simple tool that they can manipulate to accomplish many control related tasks without the
need of a controls programmer. In practice there is a steep learning curve needed to work effectively in this
environment. Even though the graphical programming environment hides the underlying programming language,
knowledge of standard programming concepts are needed to develop the graphical code. At present our staff is
reluctant to attempt to make their own changes to the graphical code but they should be able to make these changes

after they have developed a little more experience.

The graphical programming environment has several disadvantages compared with traditional programming
languages. The graphical language is not as complete as a traditional programming language. All working variables
have to be created on the graphical control display and then marked as not visible. Simple functions that require only
three or four lines in a traditional programming language can require a whole screen of the graphical programming
language. The graphical programming language is best suited for simple data manipulation and display. Very
impressive graphical displays can be created easily but much of the underlying data manipulation is best
implemented in a traditional programming language. Fortunately there are several methods to link a traditional
programming language with LabView, the simplest is through dynamic link libraries.

4.2 Dynamic Link Library

Dynamic link libraries (DLLs) are code and/or data that is not part of the original executable. The DLLs are loaded
at run-time by the original executable. This method allows commercial software developers to let end users add
custom software to the original commercial executable. Parts of our original control code can be made into a DLL
and added to any Windows NT application that allows this method of extension.

4.3 Other Packages

LabView was the first Windows NT application that we thought would be useful in complementing our existing
control software. Other packages that we could link to include spreadsheets, mathematical packages, and databases.
Spreadsheets and many mathematical packages allow the end user to add functions through dynamic link libraries. At
present we have not started to develop links to these applications but we will attempt to include them in future
developments. We have started to use a Windows NT database to store device descriptions. Our VMS version was
very outdated and needed extensive revisions. The entire device description database was moved to a Windows NT

database in only a few days.
5. CONCLUSION

Changing operating systems and windowing systems involves many modifications to the original software.
Normally we have only made extensive changes when the existing systems or software packages have become
obsolete. The VMS operating system is not obsolete but it is clearly no longer the primary system used at our
facility. Windows NT offers a very robust development environment and makes available many inexpensive
commercial applications. The initial effort of porting the control software to Windows NT is justified by allowing
us to utilize more commercial software. Future software development efforts will be in integrating and extending
commercial packages rather than writing our own software.

This work was supported by the National Science Foundation. The current contract number is DMR-9212658.

References

670

(1] 7. P. Stott and D. E. Eisert, CERN Yellow Report 90-08, 103 (1990)
[2] D. E. Eisert, Fermilab Report, These Proceedings.

671

Equipment Manager of the VME Control System for
the SPring-8 Storage Ring

A. Taketani*, S. Fujiwara, T. Fukui, T. Masuda,
R. Tanaka, T. Wada, W. Xu, and A. Yamashita

SPring-8, Kamigori, Ako-gun, Hyogo 678-12, Japan

We havedeveloped an "Equipment Manager" server process on a VME system to control SPring-8
storage ring equipment. The design concept of the EM is a device abstraction that is to control
accelerator components with a minimum knowledge of the low-level physical device configuration. It
is close to the object-oriented concept, where the accelerator equipment can be handled as objects.

1. Introduction

In the control system of the SPring-8 storage ring, workstations are used for the operator consoles and
VME systems control each accelerator equipment. They are connected by an optical Ethernet and a FDDI
network. The general description of the control system is presented in this conference [1].

A client-server model between high level and low level control can produce a flexible software structure. .
It means multiple processes can run asynchronously and be connected through a small number of
Application Program Interfaces (API). We haveadopted the client-server model for access to the
accelerator equipment. The equipment management server, called the "Equipment Manager" (EM), is
running on the VME-based CPU board under a UNIX-like real-time operating system (HP-RT). The EM
drives I/O modules and lower-level controllers through the VME bus. Access to the accelerator components
outside the EM is forbidden. The client process, called the "Access Server" (AS), is running on the operator
console workstations [1]. The EM and the AS are connected by the ONC/RPC protocol with TCP/IP
throughout the network. The AS sends a request to the EM as a function call. Then the result of the
request is the return of the value of the function to the AS. A poller for periodical data taking runs on the
same CPU board as the EM [1]. It accesses the EM in a similar manner.

2. Equipment access

The hardware address is needed to access every accelerator component through the VME system. It
consists of the CPU name on the network, the device name in the local CPU, thechannel number on the
VME /O module and so on. The hardware addresses strongly depend on the configuration of the physical
device, but not on that of the logical equipment. We adopted the device abstraction concept, which allows
us to use the logical equipment access with a minimal knowledge of the low-level physical device
configuration. The logical equipment can correspond to single or multiple physical device(s). The machine
operator controls the logical equipment, but not each physical device. The EM resolves commands for a
logical equipment and makes linkage(s) to the actual physical device(s). This scheme allows a flexible
architecture for the design of application software separated from the complex device dependent part. For
example, if a device is replaced the EM must be modified. The client of the EM and higher software can
be changed minimally. Fig. 1 shows the logical software position of the EM between logical and physical
layers.

We have five major equipment groups: the magnet, the RF, the vacuum, the beam monitoring, and the
beamline. None of the HP-RT CPU boards are assigned to multiple equipment groups. The physical device
structure of a single VME system is easy to implement in the logical structure.

3. Command and response

672

When the EM receives a logical command which consists of a character string from the AS/Poller, it
translates it into commands for the physical devices. The physical device returns a result that is a binary
string. The EM converts this to a logical response and replies to the AS/Poller. The logical command and
response are described in an English-like syntax S/V/O/C, where the S is a sender's identification, the V is
an action, the O is a target equipment, and the C is a value to be written or the status to be read. The
elements are separated by the /'. This message syntax is close to the object-oriented concept, which is quite
easy to understand for accelerator operators. The S/V/O/C command syntax is widely used in the control
system of the SPring-8 storage ring.

The S includes a host name, a process identification, an application name, and the owner of the process.
It is planned to be used in the EM for security and access control. '

The V is a simple word for the action. Currently "put" and "get" are supported in the EM. The former
sends the requested value to the equipment. The later gets the value from the equipment.

The O is the most significant term for the device abstraction concept. It indicates a unique logical
equipment without complicated hardware address information. Its naming structure is determined by the
configuration of the logical equipment. For example, the power supply of a bending magnet in the storage
ring is abstracted as "sr_mag_ps_B". The first steering magnet in the second cell is described as
"sr_mag_ps_ST 2_1".

The C is the value to send to or the reply from an equipment. Only a logical value is used instead of the

-digital bit string of the physical layer. For instance, the current of a power supply should be expressed as
"10.5A". The EM has the ability to convert from logical to physical values and vice versa.

4, Generic EM sfructure

The software structure of the EM is divided into two parts. One is the common part for all the equipment
operation that is written by the control group. The other is the equipment specific.

The common part handles the interface to the client process of the EM. It resolves the logical commands
by reference to a configuration table. The resolved result is passed to the equipment specific part. The low
level response is translated to a logical one by a table. The configuration table includes the hardware
address information and constants for the conversions. This table is created by a process on the workstation
and downloaded to the EM at initialization.

The equipment group must supply three functions for each equipment and describe a configuration table
as follows:

(1) a translation from logical C to physical value,

(2) a VME control function which calls the device driver,

(3) a translation from physical value to logical C.

The logical command is stored with the corresponding reference to the three functions with their arguments
in the configuration table.

An example of a configuration table is shown in table 1.

When a physical device or its access scheme is replaced, the corresponded functions and the table must

be modified.

Table 1: An example of a configuration table. The first line gives the V and O combination for the
abstracted command to a magnet power supply. This is followed by the conversions to hardware
addressesetc. for three actions the C may call - swirch on, swirch off and set value to one ampere.

put/sr_mag_ps_ST_1_1
on em_mag_st_on /dev/rio_dev0 1
none
em_std_ret

673

off em_mag_st_off /dev/rio_dev0 1
none
em_std_ret

%1.0A em_mag_st_current_put /dev/rio_dev0 111
em_mag_st_calib_put 1 6.5535e+3 3.27675e+4

em_std_ret

5. Research and development

While designing the EM, we have been discussing the structured design concept. A CASE tool [4] was
used for the structured analysis of the common part of the EM.

The common part of the EM has been developed and tested in a HP-UX environment for rapid
development. Most of the EM functions do not require the real-time extensions of UNIX. First we
implemented the EM for a steering magnet power supply. A software simulator for the power supply was
used instead of the real device in the early stages. The EM with the simulated power supply was a great
help in the development. After the test on HP-UX, the EM was ported to HP-RT with a few simple
modifications. The EM without the physical device and RPC takes about 400 ps to handle an abstracted
command, as measured while using a 742rt/50MHz CPU board.

6. Status

We implemented the lower-level software [2] in the EM instead of the simulator to control the real
equipment. The lower-level software include device drivers and their dedicated libraries to drive the
physical devices. The RIO system, which is a kind of field bus, was adopted for magnet control [2]{3]. We
used two steering magnets with their power supplies for the test. This was adequate for the test because it
included most of the essential pieces for equipment control by the EM. In the test arrangement the EM is
controlled by the AS [1] on a workstation through RPC. The EM on the 743rt/64MHz CPU board drives a
RIO master module on the VME bus. The RIO master sends commands to the RIO slaves that are attached
to the power supplies. The tests were successful in allowing the remote operation of the power supplies -
switching on and off, setting and reading current, reading status, and resetting errors remotely.

7. Reference

[1] R. Tanaka, et al., these Proceedings.

[2] T. Masuda, et al., these Proceedings.

[3] H. Takebe, et al., Proc. of the 4th European Particle Accelerator Conf., London, June 1994, Page 1827-
1829.

[4] Teamwork by Cadre Technologies Inc.

674

AS/Poller "Logical"

Abstract Abstract
command response
EM
Hardware :
Binary
Address * Response

Device "Physica]"

Fig. 1: The software boundary condition of the EM between the logical and physical layer.
The EM exchanges the abstract message with the AS and the Poller. The physical device is
controlled with the hardware address and binary value.

675

